This documentation is automatically generated by online-judge-tools/verification-helper
#include "ds/fenwicktree/fenwicktree.hpp"
#pragma once
#include "alg/monoid/add.hpp"
template <typename Monoid>
struct FenwickTree {
using G = Monoid;
using E = typename G::value_type;
int n;
vector<E> dat;
E total;
FenwickTree() {}
FenwickTree(int n) { build(n); }
template <typename F>
FenwickTree(int n, F f) {
build(n, f);
}
FenwickTree(const vc<E>& v) { build(v); }
void build(int m) {
n = m;
dat.assign(m, G::unit());
total = G::unit();
}
void build(const vc<E>& v) {
build(len(v), [&](int i) -> E { return v[i]; });
}
template <typename F>
void build(int m, F f) {
n = m;
dat.clear();
dat.reserve(n);
total = G::unit();
FOR(i, n) { dat.eb(f(i)); }
for (int i = 1; i <= n; ++i) {
int j = i + (i & -i);
if (j <= n) dat[j - 1] = G::op(dat[i - 1], dat[j - 1]);
}
total = prefix_sum(m);
}
E prod_all() { return total; }
E sum_all() { return total; }
E sum(int k) { return prefix_sum(k); }
E prod(int k) { return prefix_prod(k); }
E prefix_sum(int k) { return prefix_prod(k); }
E prefix_prod(int k) {
chmin(k, n);
E ret = G::unit();
for (; k > 0; k -= k & -k) ret = G::op(ret, dat[k - 1]);
return ret;
}
E sum(int L, int R) { return prod(L, R); }
E prod(int L, int R) {
chmax(L, 0), chmin(R, n);
if (L == 0) return prefix_prod(R);
assert(0 <= L && L <= R && R <= n);
E pos = G::unit(), neg = G::unit();
while (L < R) { pos = G::op(pos, dat[R - 1]), R -= R & -R; }
while (R < L) { neg = G::op(neg, dat[L - 1]), L -= L & -L; }
return G::op(pos, G::inverse(neg));
}
void add(int k, E x) { multiply(k, x); }
void multiply(int k, E x) {
static_assert(G::commute);
total = G::op(total, x);
for (++k; k <= n; k += k & -k) dat[k - 1] = G::op(dat[k - 1], x);
}
template <class F>
int max_right(const F check) {
assert(check(G::unit()));
int i = 0;
E s = G::unit();
int k = 1;
while (2 * k <= n) k *= 2;
while (k) {
if (i + k - 1 < len(dat)) {
E t = G::op(s, dat[i + k - 1]);
if (check(t)) { i += k, s = t; }
}
k >>= 1;
}
return i;
}
// check(i, x)
template <class F>
int max_right_with_index(const F check) {
assert(check(0, G::unit()));
int i = 0;
E s = G::unit();
int k = 1;
while (2 * k <= n) k *= 2;
while (k) {
if (i + k - 1 < len(dat)) {
E t = G::op(s, dat[i + k - 1]);
if (check(i + k, t)) { i += k, s = t; }
}
k >>= 1;
}
return i;
}
int kth(E k) {
return max_right([&k](E x) -> bool { return x <= k; });
}
};
#line 2 "alg/monoid/add.hpp"
template <typename X>
struct Monoid_Add {
using value_type = X;
static constexpr X op(const X &x, const X &y) noexcept { return x + y; }
static constexpr X inverse(const X &x) noexcept { return -x; }
static constexpr X power(const X &x, ll n) noexcept { return X(n) * x; }
static constexpr X unit() { return X(0); }
static constexpr bool commute = true;
};
#line 3 "ds/fenwicktree/fenwicktree.hpp"
template <typename Monoid>
struct FenwickTree {
using G = Monoid;
using E = typename G::value_type;
int n;
vector<E> dat;
E total;
FenwickTree() {}
FenwickTree(int n) { build(n); }
template <typename F>
FenwickTree(int n, F f) {
build(n, f);
}
FenwickTree(const vc<E>& v) { build(v); }
void build(int m) {
n = m;
dat.assign(m, G::unit());
total = G::unit();
}
void build(const vc<E>& v) {
build(len(v), [&](int i) -> E { return v[i]; });
}
template <typename F>
void build(int m, F f) {
n = m;
dat.clear();
dat.reserve(n);
total = G::unit();
FOR(i, n) { dat.eb(f(i)); }
for (int i = 1; i <= n; ++i) {
int j = i + (i & -i);
if (j <= n) dat[j - 1] = G::op(dat[i - 1], dat[j - 1]);
}
total = prefix_sum(m);
}
E prod_all() { return total; }
E sum_all() { return total; }
E sum(int k) { return prefix_sum(k); }
E prod(int k) { return prefix_prod(k); }
E prefix_sum(int k) { return prefix_prod(k); }
E prefix_prod(int k) {
chmin(k, n);
E ret = G::unit();
for (; k > 0; k -= k & -k) ret = G::op(ret, dat[k - 1]);
return ret;
}
E sum(int L, int R) { return prod(L, R); }
E prod(int L, int R) {
chmax(L, 0), chmin(R, n);
if (L == 0) return prefix_prod(R);
assert(0 <= L && L <= R && R <= n);
E pos = G::unit(), neg = G::unit();
while (L < R) { pos = G::op(pos, dat[R - 1]), R -= R & -R; }
while (R < L) { neg = G::op(neg, dat[L - 1]), L -= L & -L; }
return G::op(pos, G::inverse(neg));
}
void add(int k, E x) { multiply(k, x); }
void multiply(int k, E x) {
static_assert(G::commute);
total = G::op(total, x);
for (++k; k <= n; k += k & -k) dat[k - 1] = G::op(dat[k - 1], x);
}
template <class F>
int max_right(const F check) {
assert(check(G::unit()));
int i = 0;
E s = G::unit();
int k = 1;
while (2 * k <= n) k *= 2;
while (k) {
if (i + k - 1 < len(dat)) {
E t = G::op(s, dat[i + k - 1]);
if (check(t)) { i += k, s = t; }
}
k >>= 1;
}
return i;
}
// check(i, x)
template <class F>
int max_right_with_index(const F check) {
assert(check(0, G::unit()));
int i = 0;
E s = G::unit();
int k = 1;
while (2 * k <= n) k *= 2;
while (k) {
if (i + k - 1 < len(dat)) {
E t = G::op(s, dat[i + k - 1]);
if (check(i + k, t)) { i += k, s = t; }
}
k >>= 1;
}
return i;
}
int kth(E k) {
return max_right([&k](E x) -> bool { return x <= k; });
}
};