This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub maspypy/library
#include "ds/fenwicktree/fenwicktree_01.hpp"
#pragma once #include "ds/fenwicktree/fenwicktree.hpp" struct FenwickTree_01 { int N, n; vc<u64> dat; FenwickTree<Monoid_Add<int>> bit; FenwickTree_01() {} FenwickTree_01(int n) { build(n); } template <typename F> FenwickTree_01(int n, F f) { build(n, f); } void build(int m) { N = m; n = ceil<int>(N + 1, 64); dat.assign(n, u64(0)); bit.build(n); } template <typename F> void build(int m, F f) { N = m; n = ceil<int>(N + 1, 64); dat.assign(n, u64(0)); FOR(i, N) { dat[i / 64] |= u64(f(i)) << (i % 64); } bit.build(n, [&](int i) -> int { return popcnt(dat[i]); }); } int sum_all() { return bit.sum_all(); } int sum(int k) { return prefix_sum(k); } int prefix_sum(int k) { int ans = bit.sum(k / 64); ans += popcnt(dat[k / 64] & ((u64(1) << (k % 64)) - 1)); return ans; } int sum(int L, int R) { if (L == 0) return prefix_sum(R); int ans = 0; ans -= popcnt(dat[L / 64] & ((u64(1) << (L % 64)) - 1)); ans += popcnt(dat[R / 64] & ((u64(1) << (R % 64)) - 1)); ans += bit.sum(L / 64, R / 64); return ans; } void add(int k, int x) { if (x == 1) add(k); elif (x == -1) remove(k); else assert(0); } void add(int k) { dat[k / 64] |= u64(1) << (k % 64); bit.add(k / 64, 1); } void remove(int k) { dat[k / 64] &= ~(u64(1) << (k % 64)); bit.add(k / 64, -1); } int kth(int k, int L = 0) { if (k >= sum_all()) return N; k += popcnt(dat[L / 64] & ((u64(1) << (L % 64)) - 1)); L /= 64; int mid = 0; auto check = [&](auto e) -> bool { if (e <= k) chmax(mid, e); return e <= k; }; int idx = bit.max_right(check, L); if (idx == n) return N; k -= mid; u64 x = dat[idx]; int p = popcnt(x); if (p <= k) return N; k = binary_search([&](int n) -> bool { return (p - popcnt(x >> n)) <= k; }, 0, 64, 0); return 64 * idx + k; } int next(int k) { int idx = k / 64; k %= 64; u64 x = dat[idx] & ~((u64(1) << k) - 1); if (x) return 64 * idx + lowbit(x); idx = bit.kth(0, idx + 1); if (idx == n || !dat[idx]) return N; return 64 * idx + lowbit(dat[idx]); } int prev(int k) { if (k == N) --k; int idx = k / 64; k %= 64; u64 x = dat[idx]; if (k < 63) x &= (u64(1) << (k + 1)) - 1; if (x) return 64 * idx + topbit(x); idx = bit.min_left([&](auto e) -> bool { return e <= 0; }, idx) - 1; if (idx == -1) return -1; return 64 * idx + topbit(dat[idx]); } };
#line 2 "ds/fenwicktree/fenwicktree_01.hpp" #line 2 "alg/monoid/add.hpp" template <typename E> struct Monoid_Add { using X = E; using value_type = X; static constexpr X op(const X &x, const X &y) noexcept { return x + y; } static constexpr X inverse(const X &x) noexcept { return -x; } static constexpr X power(const X &x, ll n) noexcept { return X(n) * x; } static constexpr X unit() { return X(0); } static constexpr bool commute = true; }; #line 3 "ds/fenwicktree/fenwicktree.hpp" template <typename Monoid> struct FenwickTree { using G = Monoid; using MX = Monoid; using E = typename G::value_type; int n; vector<E> dat; E total; FenwickTree() {} FenwickTree(int n) { build(n); } template <typename F> FenwickTree(int n, F f) { build(n, f); } FenwickTree(const vc<E>& v) { build(v); } void build(int m) { n = m; dat.assign(m, G::unit()); total = G::unit(); } void build(const vc<E>& v) { build(len(v), [&](int i) -> E { return v[i]; }); } template <typename F> void build(int m, F f) { n = m; dat.clear(); dat.reserve(n); total = G::unit(); FOR(i, n) { dat.eb(f(i)); } for (int i = 1; i <= n; ++i) { int j = i + (i & -i); if (j <= n) dat[j - 1] = G::op(dat[i - 1], dat[j - 1]); } total = prefix_sum(m); } E prod_all() { return total; } E sum_all() { return total; } E sum(int k) { return prefix_sum(k); } E prod(int k) { return prefix_prod(k); } E prefix_sum(int k) { return prefix_prod(k); } E prefix_prod(int k) { chmin(k, n); E ret = G::unit(); for (; k > 0; k -= k & -k) ret = G::op(ret, dat[k - 1]); return ret; } E sum(int L, int R) { return prod(L, R); } E prod(int L, int R) { chmax(L, 0), chmin(R, n); if (L == 0) return prefix_prod(R); assert(0 <= L && L <= R && R <= n); E pos = G::unit(), neg = G::unit(); while (L < R) { pos = G::op(pos, dat[R - 1]), R -= R & -R; } while (R < L) { neg = G::op(neg, dat[L - 1]), L -= L & -L; } return G::op(pos, G::inverse(neg)); } vc<E> get_all() { vc<E> res(n); FOR(i, n) res[i] = prod(i, i + 1); return res; } void add(int k, E x) { multiply(k, x); } void multiply(int k, E x) { static_assert(G::commute); total = G::op(total, x); for (++k; k <= n; k += k & -k) dat[k - 1] = G::op(dat[k - 1], x); } void set(int k, E x) { add(k, G::op(G::inverse(prod(k, k + 1)), x)); } template <class F> int max_right(const F check, int L = 0) { assert(check(G::unit())); E s = G::unit(); int i = L; // 2^k 進むとダメ int k = [&]() { while (1) { if (i % 2 == 1) { s = G::op(s, G::inverse(dat[i - 1])), i -= 1; } if (i == 0) { return topbit(n) + 1; } int k = lowbit(i) - 1; if (i + (1 << k) > n) return k; E t = G::op(s, dat[i + (1 << k) - 1]); if (!check(t)) { return k; } s = G::op(s, G::inverse(dat[i - 1])), i -= i & -i; } }(); while (k) { --k; if (i + (1 << k) - 1 < len(dat)) { E t = G::op(s, dat[i + (1 << k) - 1]); if (check(t)) { i += (1 << k), s = t; } } } return i; } // check(i, x) template <class F> int max_right_with_index(const F check, int L = 0) { assert(check(L, G::unit())); E s = G::unit(); int i = L; // 2^k 進むとダメ int k = [&]() { while (1) { if (i % 2 == 1) { s = G::op(s, G::inverse(dat[i - 1])), i -= 1; } if (i == 0) { return topbit(n) + 1; } int k = lowbit(i) - 1; if (i + (1 << k) > n) return k; E t = G::op(s, dat[i + (1 << k) - 1]); if (!check(i + (1 << k), t)) { return k; } s = G::op(s, G::inverse(dat[i - 1])), i -= i & -i; } }(); while (k) { --k; if (i + (1 << k) - 1 < len(dat)) { E t = G::op(s, dat[i + (1 << k) - 1]); if (check(i + (1 << k), t)) { i += (1 << k), s = t; } } } return i; } template <class F> int min_left(const F check, int R) { assert(check(G::unit())); E s = G::unit(); int i = R; // false になるところまで戻る int k = 0; while (i > 0 && check(s)) { s = G::op(s, dat[i - 1]); k = lowbit(i); i -= i & -i; } if (check(s)) { assert(i == 0); return 0; } // 2^k 進むと ok になる // false を維持して進む while (k) { --k; E t = G::op(s, G::inverse(dat[i + (1 << k) - 1])); if (!check(t)) { i += (1 << k), s = t; } } return i + 1; } int kth(E k, int L = 0) { return max_right([&k](E x) -> bool { return x <= k; }, L); } }; #line 4 "ds/fenwicktree/fenwicktree_01.hpp" struct FenwickTree_01 { int N, n; vc<u64> dat; FenwickTree<Monoid_Add<int>> bit; FenwickTree_01() {} FenwickTree_01(int n) { build(n); } template <typename F> FenwickTree_01(int n, F f) { build(n, f); } void build(int m) { N = m; n = ceil<int>(N + 1, 64); dat.assign(n, u64(0)); bit.build(n); } template <typename F> void build(int m, F f) { N = m; n = ceil<int>(N + 1, 64); dat.assign(n, u64(0)); FOR(i, N) { dat[i / 64] |= u64(f(i)) << (i % 64); } bit.build(n, [&](int i) -> int { return popcnt(dat[i]); }); } int sum_all() { return bit.sum_all(); } int sum(int k) { return prefix_sum(k); } int prefix_sum(int k) { int ans = bit.sum(k / 64); ans += popcnt(dat[k / 64] & ((u64(1) << (k % 64)) - 1)); return ans; } int sum(int L, int R) { if (L == 0) return prefix_sum(R); int ans = 0; ans -= popcnt(dat[L / 64] & ((u64(1) << (L % 64)) - 1)); ans += popcnt(dat[R / 64] & ((u64(1) << (R % 64)) - 1)); ans += bit.sum(L / 64, R / 64); return ans; } void add(int k, int x) { if (x == 1) add(k); elif (x == -1) remove(k); else assert(0); } void add(int k) { dat[k / 64] |= u64(1) << (k % 64); bit.add(k / 64, 1); } void remove(int k) { dat[k / 64] &= ~(u64(1) << (k % 64)); bit.add(k / 64, -1); } int kth(int k, int L = 0) { if (k >= sum_all()) return N; k += popcnt(dat[L / 64] & ((u64(1) << (L % 64)) - 1)); L /= 64; int mid = 0; auto check = [&](auto e) -> bool { if (e <= k) chmax(mid, e); return e <= k; }; int idx = bit.max_right(check, L); if (idx == n) return N; k -= mid; u64 x = dat[idx]; int p = popcnt(x); if (p <= k) return N; k = binary_search([&](int n) -> bool { return (p - popcnt(x >> n)) <= k; }, 0, 64, 0); return 64 * idx + k; } int next(int k) { int idx = k / 64; k %= 64; u64 x = dat[idx] & ~((u64(1) << k) - 1); if (x) return 64 * idx + lowbit(x); idx = bit.kth(0, idx + 1); if (idx == n || !dat[idx]) return N; return 64 * idx + lowbit(dat[idx]); } int prev(int k) { if (k == N) --k; int idx = k / 64; k %= 64; u64 x = dat[idx]; if (k < 63) x &= (u64(1) << (k + 1)) - 1; if (x) return 64 * idx + topbit(x); idx = bit.min_left([&](auto e) -> bool { return e <= 0; }, idx) - 1; if (idx == -1) return -1; return 64 * idx + topbit(dat[idx]); } };