This documentation is automatically generated by online-judge-tools/verification-helper
#include "ds/offline_query/coeffient_query_2d.hpp"
#include "ds/fenwicktree/fenwicktree.hpp"
// A, B:定数
// Sparse Laurent Polynomial f(x,y) を与える
// [x^py^q] f(x,y)/(1-x)^A(1-y)^B をたくさん求める
// O(AB N logN) 時間
template <int A, int B, typename T, typename XY>
struct Coefficient_Query_2D {
struct Mono {
using value_type = array<T, A * B>;
using X = value_type;
static X op(X x, X y) {
FOR(i, A * B) x[i] += y[i];
return x;
}
static constexpr X unit() { return X{}; }
static constexpr bool commute = 1;
};
vc<tuple<XY, XY, T>> F;
vc<pair<XY, XY>> QUERY;
Coefficient_Query_2D() {}
void add_query(XY x, XY y, T c) { F.eb(x, y, c); }
void sum_query(XY p, XY q) { QUERY.eb(p, q); }
// div_fact:最後に (A-1)!(B-1)! で割るかどうか。ふつうは割る。
vc<T> calc(bool div_fact = true) {
// 加算する点の x について座圧
sort(all(F),
[&](auto& a, auto& b) -> bool { return get<0>(a) < get<0>(b); });
vc<XY> keyX;
keyX.reserve(len(F));
for (auto&& [a, b, c]: F) {
if (keyX.empty() || keyX.back() != a) keyX.eb(a);
a = len(keyX) - 1;
}
keyX.shrink_to_fit();
// y 昇順にクエリ処理する
const int Q = len(QUERY);
vc<int> I(Q);
iota(all(I), 0);
sort(all(I),
[&](auto& a, auto& b) -> bool { return QUERY[a].se < QUERY[b].se; });
sort(all(F),
[&](auto& a, auto& b) -> bool { return get<1>(a) < get<1>(b); });
FenwickTree<Mono> bit(len(keyX));
vc<T> res(Q);
int ptr = 0;
for (auto&& qid: I) {
auto [p, q] = QUERY[qid];
// y <= q となる F の加算
while (ptr < len(F) && get<1>(F[ptr]) <= q) {
auto& [ia, b, w] = F[ptr++];
XY a = keyX[ia];
// w(p-a+1)...(p-a+A-1)(q-b+1)...(q-b+B-1) を p,q の多項式として
vc<T> f(A), g(B);
f[0] = w, g[0] = 1;
FOR(i, A - 1) { FOR_R(j, i + 1) f[j + 1] += f[j] * T(-a + 1 + i); }
FOR(i, B - 1) { FOR_R(j, i + 1) g[j + 1] += g[j] * T(-b + 1 + i); }
reverse(all(f)), reverse(all(g));
array<T, A * B> G{};
FOR(i, A) FOR(j, B) G[B * i + j] = f[i] * g[j];
bit.add(ia, G);
}
auto SM = bit.sum(UB(keyX, p));
T sm = 0, pow_p = 1;
FOR(i, A) {
T prod = pow_p;
FOR(j, B) { sm += prod * SM[B * i + j], prod *= T(q); }
pow_p *= T(p);
}
res[qid] = sm;
}
if (div_fact && (A >= 3 || B >= 3)) {
T cf = T(1);
FOR(a, 1, A) cf *= T(a);
FOR(b, 1, B) cf *= T(b);
for (auto&& x: res) x /= cf;
}
return res;
}
};
#line 2 "alg/monoid/add.hpp"
template <typename E>
struct Monoid_Add {
using X = E;
using value_type = X;
static constexpr X op(const X &x, const X &y) noexcept { return x + y; }
static constexpr X inverse(const X &x) noexcept { return -x; }
static constexpr X power(const X &x, ll n) noexcept { return X(n) * x; }
static constexpr X unit() { return X(0); }
static constexpr bool commute = true;
};
#line 3 "ds/fenwicktree/fenwicktree.hpp"
template <typename Monoid>
struct FenwickTree {
using G = Monoid;
using MX = Monoid;
using E = typename G::value_type;
int n;
vector<E> dat;
E total;
FenwickTree() {}
FenwickTree(int n) { build(n); }
template <typename F>
FenwickTree(int n, F f) {
build(n, f);
}
FenwickTree(const vc<E>& v) { build(v); }
void build(int m) {
n = m;
dat.assign(m, G::unit());
total = G::unit();
}
void build(const vc<E>& v) {
build(len(v), [&](int i) -> E { return v[i]; });
}
template <typename F>
void build(int m, F f) {
n = m;
dat.clear();
dat.reserve(n);
total = G::unit();
FOR(i, n) { dat.eb(f(i)); }
for (int i = 1; i <= n; ++i) {
int j = i + (i & -i);
if (j <= n) dat[j - 1] = G::op(dat[i - 1], dat[j - 1]);
}
total = prefix_sum(m);
}
E prod_all() { return total; }
E sum_all() { return total; }
E sum(int k) { return prefix_sum(k); }
E prod(int k) { return prefix_prod(k); }
E prefix_sum(int k) { return prefix_prod(k); }
E prefix_prod(int k) {
chmin(k, n);
E ret = G::unit();
for (; k > 0; k -= k & -k) ret = G::op(ret, dat[k - 1]);
return ret;
}
E sum(int L, int R) { return prod(L, R); }
E prod(int L, int R) {
chmax(L, 0), chmin(R, n);
if (L == 0) return prefix_prod(R);
assert(0 <= L && L <= R && R <= n);
E pos = G::unit(), neg = G::unit();
while (L < R) { pos = G::op(pos, dat[R - 1]), R -= R & -R; }
while (R < L) { neg = G::op(neg, dat[L - 1]), L -= L & -L; }
return G::op(pos, G::inverse(neg));
}
vc<E> get_all() {
vc<E> res(n);
FOR(i, n) res[i] = prod(i, i + 1);
return res;
}
void add(int k, E x) { multiply(k, x); }
void multiply(int k, E x) {
static_assert(G::commute);
total = G::op(total, x);
for (++k; k <= n; k += k & -k) dat[k - 1] = G::op(dat[k - 1], x);
}
void set(int k, E x) { add(k, G::op(G::inverse(prod(k, k + 1)), x)); }
template <class F>
int max_right(const F check, int L = 0) {
assert(check(G::unit()));
E s = G::unit();
int i = L;
// 2^k 進むとダメ
int k = [&]() {
while (1) {
if (i % 2 == 1) { s = G::op(s, G::inverse(dat[i - 1])), i -= 1; }
if (i == 0) { return topbit(n) + 1; }
int k = lowbit(i) - 1;
if (i + (1 << k) > n) return k;
E t = G::op(s, dat[i + (1 << k) - 1]);
if (!check(t)) { return k; }
s = G::op(s, G::inverse(dat[i - 1])), i -= i & -i;
}
}();
while (k) {
--k;
if (i + (1 << k) - 1 < len(dat)) {
E t = G::op(s, dat[i + (1 << k) - 1]);
if (check(t)) { i += (1 << k), s = t; }
}
}
return i;
}
// check(i, x)
template <class F>
int max_right_with_index(const F check, int L = 0) {
assert(check(L, G::unit()));
E s = G::unit();
int i = L;
// 2^k 進むとダメ
int k = [&]() {
while (1) {
if (i % 2 == 1) { s = G::op(s, G::inverse(dat[i - 1])), i -= 1; }
if (i == 0) { return topbit(n) + 1; }
int k = lowbit(i) - 1;
if (i + (1 << k) > n) return k;
E t = G::op(s, dat[i + (1 << k) - 1]);
if (!check(i + (1 << k), t)) { return k; }
s = G::op(s, G::inverse(dat[i - 1])), i -= i & -i;
}
}();
while (k) {
--k;
if (i + (1 << k) - 1 < len(dat)) {
E t = G::op(s, dat[i + (1 << k) - 1]);
if (check(i + (1 << k), t)) { i += (1 << k), s = t; }
}
}
return i;
}
template <class F>
int min_left(const F check, int R) {
assert(check(G::unit()));
E s = G::unit();
int i = R;
// false になるところまで戻る
int k = 0;
while (i > 0 && check(s)) {
s = G::op(s, dat[i - 1]);
k = lowbit(i);
i -= i & -i;
}
if (check(s)) {
assert(i == 0);
return 0;
}
// 2^k 進むと ok になる
// false を維持して進む
while (k) {
--k;
E t = G::op(s, G::inverse(dat[i + (1 << k) - 1]));
if (!check(t)) { i += (1 << k), s = t; }
}
return i + 1;
}
int kth(E k, int L = 0) {
return max_right([&k](E x) -> bool { return x <= k; }, L);
}
};
#line 2 "ds/offline_query/coeffient_query_2d.hpp"
// A, B:定数
// Sparse Laurent Polynomial f(x,y) を与える
// [x^py^q] f(x,y)/(1-x)^A(1-y)^B をたくさん求める
// O(AB N logN) 時間
template <int A, int B, typename T, typename XY>
struct Coefficient_Query_2D {
struct Mono {
using value_type = array<T, A * B>;
using X = value_type;
static X op(X x, X y) {
FOR(i, A * B) x[i] += y[i];
return x;
}
static constexpr X unit() { return X{}; }
static constexpr bool commute = 1;
};
vc<tuple<XY, XY, T>> F;
vc<pair<XY, XY>> QUERY;
Coefficient_Query_2D() {}
void add_query(XY x, XY y, T c) { F.eb(x, y, c); }
void sum_query(XY p, XY q) { QUERY.eb(p, q); }
// div_fact:最後に (A-1)!(B-1)! で割るかどうか。ふつうは割る。
vc<T> calc(bool div_fact = true) {
// 加算する点の x について座圧
sort(all(F),
[&](auto& a, auto& b) -> bool { return get<0>(a) < get<0>(b); });
vc<XY> keyX;
keyX.reserve(len(F));
for (auto&& [a, b, c]: F) {
if (keyX.empty() || keyX.back() != a) keyX.eb(a);
a = len(keyX) - 1;
}
keyX.shrink_to_fit();
// y 昇順にクエリ処理する
const int Q = len(QUERY);
vc<int> I(Q);
iota(all(I), 0);
sort(all(I),
[&](auto& a, auto& b) -> bool { return QUERY[a].se < QUERY[b].se; });
sort(all(F),
[&](auto& a, auto& b) -> bool { return get<1>(a) < get<1>(b); });
FenwickTree<Mono> bit(len(keyX));
vc<T> res(Q);
int ptr = 0;
for (auto&& qid: I) {
auto [p, q] = QUERY[qid];
// y <= q となる F の加算
while (ptr < len(F) && get<1>(F[ptr]) <= q) {
auto& [ia, b, w] = F[ptr++];
XY a = keyX[ia];
// w(p-a+1)...(p-a+A-1)(q-b+1)...(q-b+B-1) を p,q の多項式として
vc<T> f(A), g(B);
f[0] = w, g[0] = 1;
FOR(i, A - 1) { FOR_R(j, i + 1) f[j + 1] += f[j] * T(-a + 1 + i); }
FOR(i, B - 1) { FOR_R(j, i + 1) g[j + 1] += g[j] * T(-b + 1 + i); }
reverse(all(f)), reverse(all(g));
array<T, A * B> G{};
FOR(i, A) FOR(j, B) G[B * i + j] = f[i] * g[j];
bit.add(ia, G);
}
auto SM = bit.sum(UB(keyX, p));
T sm = 0, pow_p = 1;
FOR(i, A) {
T prod = pow_p;
FOR(j, B) { sm += prod * SM[B * i + j], prod *= T(q); }
pow_p *= T(p);
}
res[qid] = sm;
}
if (div_fact && (A >= 3 || B >= 3)) {
T cf = T(1);
FOR(a, 1, A) cf *= T(a);
FOR(b, 1, B) cf *= T(b);
for (auto&& x: res) x /= cf;
}
return res;
}
};