This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub maspypy/library
#include "ds/offline_query/rectangle_add_point_sum.hpp"
#include "ds/fenwicktree/fenwicktree.hpp" template <typename AbelGroup, typename XY, bool SMALL_X = false> struct Rectangle_Add_Point_Sum { using G = typename AbelGroup::value_type; vector<tuple<XY, XY, XY, G>> rect; vector<tuple<int, XY, XY>> point; Rectangle_Add_Point_Sum() {} void add_query(XY x1, XY x2, XY y1, XY y2, G g) { rect.eb(y1, x1, x2, g), rect.eb(y2, x2, x1, g); } void sum_query(XY x, XY y) { point.eb(len(point), x, y); } vector<G> calc() { int N = rect.size(), Q = point.size(); if (N == 0 || Q == 0) return vector<G>(Q, AbelGroup::unit()); // X 方向の座圧 int NX = 0; if (!SMALL_X) { sort(all(point), [&](auto &x, auto &y) -> bool { return get<1>(x) < get<1>(y); }); vc<XY> keyX; keyX.reserve(Q); for (auto &&[i, a, b]: point) { if (len(keyX) == 0 || keyX.back() != a) { keyX.eb(a); } a = len(keyX) - 1; } for (auto &&[y, x1, x2, g]: rect) x1 = LB(keyX, x1), x2 = LB(keyX, x2); NX = len(keyX); } if (SMALL_X) { XY mx = infty<XY>; for (auto &&[i, x, y]: point) chmin(mx, x); for (auto &&[i, x, y]: point) x -= mx, chmax(NX, x + 1); for (auto &&[y, x1, x2, g]: rect) { x1 -= mx, x2 -= mx; x1 = max(0, min<int>(x1, NX)), x2 = max(0, min<int>(x2, NX)); } } sort(all(point), [&](auto &x, auto &y) -> bool { return get<2>(x) < get<2>(y); }); sort(all(rect), [&](auto &x, auto &y) -> bool { return get<0>(x) < get<0>(y); }); FenwickTree<AbelGroup> bit(NX); vc<G> res(Q, AbelGroup::unit()); int j = 0; FOR(i, Q) { auto [q, x, y] = point[i]; while (j < N && get<0>(rect[j]) <= y) { auto [yy, x1, x2, g] = rect[j++]; bit.add(x1, g), bit.add(x2, AbelGroup::inverse(g)); } res[q] = bit.sum(x + 1); } return res; } };
#line 2 "alg/monoid/add.hpp" template <typename E> struct Monoid_Add { using X = E; using value_type = X; static constexpr X op(const X &x, const X &y) noexcept { return x + y; } static constexpr X inverse(const X &x) noexcept { return -x; } static constexpr X power(const X &x, ll n) noexcept { return X(n) * x; } static constexpr X unit() { return X(0); } static constexpr bool commute = true; }; #line 3 "ds/fenwicktree/fenwicktree.hpp" template <typename Monoid> struct FenwickTree { using G = Monoid; using MX = Monoid; using E = typename G::value_type; int n; vector<E> dat; E total; FenwickTree() {} FenwickTree(int n) { build(n); } template <typename F> FenwickTree(int n, F f) { build(n, f); } FenwickTree(const vc<E>& v) { build(v); } void build(int m) { n = m; dat.assign(m, G::unit()); total = G::unit(); } void build(const vc<E>& v) { build(len(v), [&](int i) -> E { return v[i]; }); } template <typename F> void build(int m, F f) { n = m; dat.clear(); dat.reserve(n); total = G::unit(); FOR(i, n) { dat.eb(f(i)); } for (int i = 1; i <= n; ++i) { int j = i + (i & -i); if (j <= n) dat[j - 1] = G::op(dat[i - 1], dat[j - 1]); } total = prefix_sum(m); } E prod_all() { return total; } E sum_all() { return total; } E sum(int k) { return prefix_sum(k); } E prod(int k) { return prefix_prod(k); } E prefix_sum(int k) { return prefix_prod(k); } E prefix_prod(int k) { chmin(k, n); E ret = G::unit(); for (; k > 0; k -= k & -k) ret = G::op(ret, dat[k - 1]); return ret; } E sum(int L, int R) { return prod(L, R); } E prod(int L, int R) { chmax(L, 0), chmin(R, n); if (L == 0) return prefix_prod(R); assert(0 <= L && L <= R && R <= n); E pos = G::unit(), neg = G::unit(); while (L < R) { pos = G::op(pos, dat[R - 1]), R -= R & -R; } while (R < L) { neg = G::op(neg, dat[L - 1]), L -= L & -L; } return G::op(pos, G::inverse(neg)); } vc<E> get_all() { vc<E> res(n); FOR(i, n) res[i] = prod(i, i + 1); return res; } void add(int k, E x) { multiply(k, x); } void multiply(int k, E x) { static_assert(G::commute); total = G::op(total, x); for (++k; k <= n; k += k & -k) dat[k - 1] = G::op(dat[k - 1], x); } void set(int k, E x) { add(k, G::op(G::inverse(prod(k, k + 1)), x)); } template <class F> int max_right(const F check, int L = 0) { assert(check(G::unit())); E s = G::unit(); int i = L; // 2^k 進むとダメ int k = [&]() { while (1) { if (i % 2 == 1) { s = G::op(s, G::inverse(dat[i - 1])), i -= 1; } if (i == 0) { return topbit(n) + 1; } int k = lowbit(i) - 1; if (i + (1 << k) > n) return k; E t = G::op(s, dat[i + (1 << k) - 1]); if (!check(t)) { return k; } s = G::op(s, G::inverse(dat[i - 1])), i -= i & -i; } }(); while (k) { --k; if (i + (1 << k) - 1 < len(dat)) { E t = G::op(s, dat[i + (1 << k) - 1]); if (check(t)) { i += (1 << k), s = t; } } } return i; } // check(i, x) template <class F> int max_right_with_index(const F check, int L = 0) { assert(check(L, G::unit())); E s = G::unit(); int i = L; // 2^k 進むとダメ int k = [&]() { while (1) { if (i % 2 == 1) { s = G::op(s, G::inverse(dat[i - 1])), i -= 1; } if (i == 0) { return topbit(n) + 1; } int k = lowbit(i) - 1; if (i + (1 << k) > n) return k; E t = G::op(s, dat[i + (1 << k) - 1]); if (!check(i + (1 << k), t)) { return k; } s = G::op(s, G::inverse(dat[i - 1])), i -= i & -i; } }(); while (k) { --k; if (i + (1 << k) - 1 < len(dat)) { E t = G::op(s, dat[i + (1 << k) - 1]); if (check(i + (1 << k), t)) { i += (1 << k), s = t; } } } return i; } template <class F> int min_left(const F check, int R) { assert(check(G::unit())); E s = G::unit(); int i = R; // false になるところまで戻る int k = 0; while (i > 0 && check(s)) { s = G::op(s, dat[i - 1]); k = lowbit(i); i -= i & -i; } if (check(s)) { assert(i == 0); return 0; } // 2^k 進むと ok になる // false を維持して進む while (k) { --k; E t = G::op(s, G::inverse(dat[i + (1 << k) - 1])); if (!check(t)) { i += (1 << k), s = t; } } return i + 1; } int kth(E k, int L = 0) { return max_right([&k](E x) -> bool { return x <= k; }, L); } }; #line 2 "ds/offline_query/rectangle_add_point_sum.hpp" template <typename AbelGroup, typename XY, bool SMALL_X = false> struct Rectangle_Add_Point_Sum { using G = typename AbelGroup::value_type; vector<tuple<XY, XY, XY, G>> rect; vector<tuple<int, XY, XY>> point; Rectangle_Add_Point_Sum() {} void add_query(XY x1, XY x2, XY y1, XY y2, G g) { rect.eb(y1, x1, x2, g), rect.eb(y2, x2, x1, g); } void sum_query(XY x, XY y) { point.eb(len(point), x, y); } vector<G> calc() { int N = rect.size(), Q = point.size(); if (N == 0 || Q == 0) return vector<G>(Q, AbelGroup::unit()); // X 方向の座圧 int NX = 0; if (!SMALL_X) { sort(all(point), [&](auto &x, auto &y) -> bool { return get<1>(x) < get<1>(y); }); vc<XY> keyX; keyX.reserve(Q); for (auto &&[i, a, b]: point) { if (len(keyX) == 0 || keyX.back() != a) { keyX.eb(a); } a = len(keyX) - 1; } for (auto &&[y, x1, x2, g]: rect) x1 = LB(keyX, x1), x2 = LB(keyX, x2); NX = len(keyX); } if (SMALL_X) { XY mx = infty<XY>; for (auto &&[i, x, y]: point) chmin(mx, x); for (auto &&[i, x, y]: point) x -= mx, chmax(NX, x + 1); for (auto &&[y, x1, x2, g]: rect) { x1 -= mx, x2 -= mx; x1 = max(0, min<int>(x1, NX)), x2 = max(0, min<int>(x2, NX)); } } sort(all(point), [&](auto &x, auto &y) -> bool { return get<2>(x) < get<2>(y); }); sort(all(rect), [&](auto &x, auto &y) -> bool { return get<0>(x) < get<0>(y); }); FenwickTree<AbelGroup> bit(NX); vc<G> res(Q, AbelGroup::unit()); int j = 0; FOR(i, Q) { auto [q, x, y] = point[i]; while (j < N && get<0>(rect[j]) <= y) { auto [yy, x1, x2, g] = rect[j++]; bit.add(x1, g), bit.add(x2, AbelGroup::inverse(g)); } res[q] = bit.sum(x + 1); } return res; } };