This documentation is automatically generated by online-judge-tools/verification-helper
#include "ds/offline_query/point_add_rectangle_sum.hpp"
#include "ds/fenwicktree/fenwicktree.hpp"
template <typename AbelGroup, typename XY, bool SMALL_X = false>
struct Point_Add_Rectangle_Sum {
using G = typename AbelGroup::value_type;
using Point = tuple<XY, XY, G>;
vector<Point> point;
vector<tuple<XY, XY, XY, XY>> rect;
Point_Add_Rectangle_Sum() {}
void add_query(XY x, XY y, G w) { point.eb(x, y, w); }
void sum_query(XY xl, XY xr, XY yl, XY yr) { rect.eb(xl, xr, yl, yr); }
vector<G> calc() {
int N = point.size(), Q = rect.size();
if (N == 0 || Q == 0) return vector<G>(Q, AbelGroup::unit());
// X 方向の座圧
int NX = 0;
if (!SMALL_X) {
sort(all(point),
[&](auto &x, auto &y) -> bool { return get<0>(x) < get<0>(y); });
vc<XY> keyX;
keyX.reserve(N);
for (auto &&[a, b, c]: point) {
if (len(keyX) == 0 || keyX.back() != a) { keyX.eb(a); }
a = len(keyX) - 1;
}
for (auto &&[xl, xr, yl, yr]: rect) {
xl = LB(keyX, xl);
xr = LB(keyX, xr);
}
NX = len(keyX);
}
if (SMALL_X) {
XY mx = infty<XY>;
for (auto &&[x, y, g]: point) chmin(mx, x);
for (auto &&[x, y, g]: point) x -= mx, chmax(NX, x + 1);
for (auto &&[xl, xr, yl, yr]: rect) {
xl -= mx, xr -= mx;
xl = max(0, min<int>(xl, NX));
xr = max(0, min<int>(xr, NX));
}
}
vc<tuple<XY, int, int, int>> event(Q + Q);
FOR(q, Q) {
auto &[xl, xr, yl, yr] = rect[q];
event[2 * q] = {yl, xl, xr, 2 * q};
event[2 * q + 1] = {yr, xl, xr, 2 * q + 1};
}
sort(all(point),
[&](auto &x, auto &y) -> bool { return get<1>(x) < get<1>(y); });
sort(all(event),
[&](auto &x, auto &y) -> bool { return get<0>(x) < get<0>(y); });
FenwickTree<AbelGroup> bit(NX);
vc<G> res(Q, AbelGroup::unit());
int j = 0;
for (auto &&[y, xl, xr, qq]: event) {
while (j < N && get<1>(point[j]) < y) {
bit.add(get<0>(point[j]), get<2>(point[j]));
++j;
}
G g = bit.sum(xl, xr);
int q = qq / 2;
if (qq % 2 == 0) g = AbelGroup::inverse(g);
res[q] = AbelGroup::op(res[q], g);
}
return res;
}
};
#line 2 "alg/monoid/add.hpp"
template <typename X>
struct Monoid_Add {
using value_type = X;
static constexpr X op(const X &x, const X &y) noexcept { return x + y; }
static constexpr X inverse(const X &x) noexcept { return -x; }
static constexpr X power(const X &x, ll n) noexcept { return X(n) * x; }
static constexpr X unit() { return X(0); }
static constexpr bool commute = true;
};
#line 3 "ds/fenwicktree/fenwicktree.hpp"
template <typename Monoid>
struct FenwickTree {
using G = Monoid;
using E = typename G::value_type;
int n;
vector<E> dat;
E total;
FenwickTree() {}
FenwickTree(int n) { build(n); }
template <typename F>
FenwickTree(int n, F f) {
build(n, f);
}
FenwickTree(const vc<E>& v) { build(v); }
void build(int m) {
n = m;
dat.assign(m, G::unit());
total = G::unit();
}
void build(const vc<E>& v) {
build(len(v), [&](int i) -> E { return v[i]; });
}
template <typename F>
void build(int m, F f) {
n = m;
dat.clear();
dat.reserve(n);
total = G::unit();
FOR(i, n) { dat.eb(f(i)); }
for (int i = 1; i <= n; ++i) {
int j = i + (i & -i);
if (j <= n) dat[j - 1] = G::op(dat[i - 1], dat[j - 1]);
}
total = prefix_sum(m);
}
E prod_all() { return total; }
E sum_all() { return total; }
E sum(int k) { return prefix_sum(k); }
E prod(int k) { return prefix_prod(k); }
E prefix_sum(int k) { return prefix_prod(k); }
E prefix_prod(int k) {
chmin(k, n);
E ret = G::unit();
for (; k > 0; k -= k & -k) ret = G::op(ret, dat[k - 1]);
return ret;
}
E sum(int L, int R) { return prod(L, R); }
E prod(int L, int R) {
chmax(L, 0), chmin(R, n);
if (L == 0) return prefix_prod(R);
assert(0 <= L && L <= R && R <= n);
E pos = G::unit(), neg = G::unit();
while (L < R) { pos = G::op(pos, dat[R - 1]), R -= R & -R; }
while (R < L) { neg = G::op(neg, dat[L - 1]), L -= L & -L; }
return G::op(pos, G::inverse(neg));
}
void add(int k, E x) { multiply(k, x); }
void multiply(int k, E x) {
static_assert(G::commute);
total = G::op(total, x);
for (++k; k <= n; k += k & -k) dat[k - 1] = G::op(dat[k - 1], x);
}
template <class F>
int max_right(const F check) {
assert(check(G::unit()));
int i = 0;
E s = G::unit();
int k = 1;
while (2 * k <= n) k *= 2;
while (k) {
if (i + k - 1 < len(dat)) {
E t = G::op(s, dat[i + k - 1]);
if (check(t)) { i += k, s = t; }
}
k >>= 1;
}
return i;
}
// check(i, x)
template <class F>
int max_right_with_index(const F check) {
assert(check(0, G::unit()));
int i = 0;
E s = G::unit();
int k = 1;
while (2 * k <= n) k *= 2;
while (k) {
if (i + k - 1 < len(dat)) {
E t = G::op(s, dat[i + k - 1]);
if (check(i + k, t)) { i += k, s = t; }
}
k >>= 1;
}
return i;
}
int kth(E k) {
return max_right([&k](E x) -> bool { return x <= k; });
}
};
#line 2 "ds/offline_query/point_add_rectangle_sum.hpp"
template <typename AbelGroup, typename XY, bool SMALL_X = false>
struct Point_Add_Rectangle_Sum {
using G = typename AbelGroup::value_type;
using Point = tuple<XY, XY, G>;
vector<Point> point;
vector<tuple<XY, XY, XY, XY>> rect;
Point_Add_Rectangle_Sum() {}
void add_query(XY x, XY y, G w) { point.eb(x, y, w); }
void sum_query(XY xl, XY xr, XY yl, XY yr) { rect.eb(xl, xr, yl, yr); }
vector<G> calc() {
int N = point.size(), Q = rect.size();
if (N == 0 || Q == 0) return vector<G>(Q, AbelGroup::unit());
// X 方向の座圧
int NX = 0;
if (!SMALL_X) {
sort(all(point),
[&](auto &x, auto &y) -> bool { return get<0>(x) < get<0>(y); });
vc<XY> keyX;
keyX.reserve(N);
for (auto &&[a, b, c]: point) {
if (len(keyX) == 0 || keyX.back() != a) { keyX.eb(a); }
a = len(keyX) - 1;
}
for (auto &&[xl, xr, yl, yr]: rect) {
xl = LB(keyX, xl);
xr = LB(keyX, xr);
}
NX = len(keyX);
}
if (SMALL_X) {
XY mx = infty<XY>;
for (auto &&[x, y, g]: point) chmin(mx, x);
for (auto &&[x, y, g]: point) x -= mx, chmax(NX, x + 1);
for (auto &&[xl, xr, yl, yr]: rect) {
xl -= mx, xr -= mx;
xl = max(0, min<int>(xl, NX));
xr = max(0, min<int>(xr, NX));
}
}
vc<tuple<XY, int, int, int>> event(Q + Q);
FOR(q, Q) {
auto &[xl, xr, yl, yr] = rect[q];
event[2 * q] = {yl, xl, xr, 2 * q};
event[2 * q + 1] = {yr, xl, xr, 2 * q + 1};
}
sort(all(point),
[&](auto &x, auto &y) -> bool { return get<1>(x) < get<1>(y); });
sort(all(event),
[&](auto &x, auto &y) -> bool { return get<0>(x) < get<0>(y); });
FenwickTree<AbelGroup> bit(NX);
vc<G> res(Q, AbelGroup::unit());
int j = 0;
for (auto &&[y, xl, xr, qq]: event) {
while (j < N && get<1>(point[j]) < y) {
bit.add(get<0>(point[j]), get<2>(point[j]));
++j;
}
G g = bit.sum(xl, xr);
int q = qq / 2;
if (qq % 2 == 0) g = AbelGroup::inverse(g);
res[q] = AbelGroup::op(res[q], g);
}
return res;
}
};