This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub maspypy/library
#define PROBLEM "https://yukicoder.me/problems/no/2361" #include "my_template.hpp" #include "other/io.hpp" #include "string/suffix_array.hpp" #include "string/suffix_tree.hpp" #include "alg/monoid/min_idx.hpp" #include "ds/segtree/segtree.hpp" void solve() { LL(N, Q); STR(S); Suffix_Array X(S); VEC(pi, query, Q); for (auto&& [a, b]: query) --a; // 場所 -> 長さ, クエリ番号 vvc<pi> dat(N); FOR(q, Q) { auto [a, b] = query[q]; ll n = b - a; dat[X.ISA[a]].eb(n, q); } FOR(i, N) { sort(all(dat[i])); reverse(all(dat[i])); } SegTree<Monoid_Min_Idx<int>> seg(N); auto upd = [&](int i) -> void { if (dat[i].empty()) seg.set(i, {infty<int>, -1}); else seg.set(i, {dat[i].back().fi, i}); }; FOR(i, N) upd(i); vi ANS(Q); Graph<int, 1> G; vc<tuple<int, int, int, int>> rect; tie(G, rect) = suffix_tree(X); ll vis = 0; auto dfs = [&](auto& dfs, int v) -> void { auto [L, R, a, b] = rect[v]; while (1) { auto [mi, idx] = seg.prod(L, R); if (mi >= b) break; auto [sz, qid] = POP(dat[idx]); assert(sz == mi); upd(idx); ll ans = vis; ans += (mi - a) * (R - L); ANS[qid] = ans; } vis += (R - L) * (b - a); for (auto&& e: G[v]) dfs(dfs, e.to); }; dfs(dfs, 0); for (auto&& x: ANS) print(x); } signed main() { solve(); return 0; }
#line 1 "test/3_yukicoder/2361.test.cpp" #define PROBLEM "https://yukicoder.me/problems/no/2361" #line 1 "my_template.hpp" #if defined(LOCAL) #include <my_template_compiled.hpp> #else // https://codeforces.com/blog/entry/96344 #pragma GCC optimize("Ofast,unroll-loops") // いまの CF だとこれ入れると動かない? // #pragma GCC target("avx2,popcnt") #include <bits/stdc++.h> using namespace std; using ll = long long; using u8 = uint8_t; using u16 = uint16_t; using u32 = uint32_t; using u64 = uint64_t; using i128 = __int128; using u128 = unsigned __int128; using f128 = __float128; template <class T> constexpr T infty = 0; template <> constexpr int infty<int> = 1'010'000'000; template <> constexpr ll infty<ll> = 2'020'000'000'000'000'000; template <> constexpr u32 infty<u32> = infty<int>; template <> constexpr u64 infty<u64> = infty<ll>; template <> constexpr i128 infty<i128> = i128(infty<ll>) * 2'000'000'000'000'000'000; template <> constexpr double infty<double> = infty<ll>; template <> constexpr long double infty<long double> = infty<ll>; using pi = pair<ll, ll>; using vi = vector<ll>; template <class T> using vc = vector<T>; template <class T> using vvc = vector<vc<T>>; template <class T> using vvvc = vector<vvc<T>>; template <class T> using vvvvc = vector<vvvc<T>>; template <class T> using vvvvvc = vector<vvvvc<T>>; template <class T> using pq = priority_queue<T>; template <class T> using pqg = priority_queue<T, vector<T>, greater<T>>; #define vv(type, name, h, ...) vector<vector<type>> name(h, vector<type>(__VA_ARGS__)) #define vvv(type, name, h, w, ...) vector<vector<vector<type>>> name(h, vector<vector<type>>(w, vector<type>(__VA_ARGS__))) #define vvvv(type, name, a, b, c, ...) \ vector<vector<vector<vector<type>>>> name(a, vector<vector<vector<type>>>(b, vector<vector<type>>(c, vector<type>(__VA_ARGS__)))) // https://trap.jp/post/1224/ #define FOR1(a) for (ll _ = 0; _ < ll(a); ++_) #define FOR2(i, a) for (ll i = 0; i < ll(a); ++i) #define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i) #define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c)) #define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i) #define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i) #define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i) #define overload4(a, b, c, d, e, ...) e #define overload3(a, b, c, d, ...) d #define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__) #define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__) #define FOR_subset(t, s) for (ll t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s))) #define all(x) x.begin(), x.end() #define len(x) ll(x.size()) #define elif else if #define eb emplace_back #define mp make_pair #define mt make_tuple #define fi first #define se second #define stoi stoll int popcnt(int x) { return __builtin_popcount(x); } int popcnt(u32 x) { return __builtin_popcount(x); } int popcnt(ll x) { return __builtin_popcountll(x); } int popcnt(u64 x) { return __builtin_popcountll(x); } int popcnt_mod_2(int x) { return __builtin_parity(x); } int popcnt_mod_2(u32 x) { return __builtin_parity(x); } int popcnt_mod_2(ll x) { return __builtin_parityll(x); } int popcnt_mod_2(u64 x) { return __builtin_parityll(x); } // (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2) int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); } int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); } int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); } int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); } // (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2) int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); } int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); } int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); } int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); } template <typename T> T floor(T a, T b) { return a / b - (a % b && (a ^ b) < 0); } template <typename T> T ceil(T x, T y) { return floor(x + y - 1, y); } template <typename T> T bmod(T x, T y) { return x - y * floor(x, y); } template <typename T> pair<T, T> divmod(T x, T y) { T q = floor(x, y); return {q, x - q * y}; } template <typename T, typename U> T SUM(const vector<U> &A) { T sm = 0; for (auto &&a: A) sm += a; return sm; } #define MIN(v) *min_element(all(v)) #define MAX(v) *max_element(all(v)) #define LB(c, x) distance((c).begin(), lower_bound(all(c), (x))) #define UB(c, x) distance((c).begin(), upper_bound(all(c), (x))) #define UNIQUE(x) sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit() template <typename T> T POP(deque<T> &que) { T a = que.front(); que.pop_front(); return a; } template <typename T> T POP(pq<T> &que) { T a = que.top(); que.pop(); return a; } template <typename T> T POP(pqg<T> &que) { T a = que.top(); que.pop(); return a; } template <typename T> T POP(vc<T> &que) { T a = que.back(); que.pop_back(); return a; } template <typename F> ll binary_search(F check, ll ok, ll ng, bool check_ok = true) { if (check_ok) assert(check(ok)); while (abs(ok - ng) > 1) { auto x = (ng + ok) / 2; (check(x) ? ok : ng) = x; } return ok; } template <typename F> double binary_search_real(F check, double ok, double ng, int iter = 100) { FOR(iter) { double x = (ok + ng) / 2; (check(x) ? ok : ng) = x; } return (ok + ng) / 2; } template <class T, class S> inline bool chmax(T &a, const S &b) { return (a < b ? a = b, 1 : 0); } template <class T, class S> inline bool chmin(T &a, const S &b) { return (a > b ? a = b, 1 : 0); } // ? は -1 vc<int> s_to_vi(const string &S, char first_char) { vc<int> A(S.size()); FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); } return A; } template <typename T, typename U> vector<T> cumsum(vector<U> &A, int off = 1) { int N = A.size(); vector<T> B(N + 1); FOR(i, N) { B[i + 1] = B[i] + A[i]; } if (off == 0) B.erase(B.begin()); return B; } // stable sort template <typename T> vector<int> argsort(const vector<T> &A) { vector<int> ids(len(A)); iota(all(ids), 0); sort(all(ids), [&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); }); return ids; } // A[I[0]], A[I[1]], ... template <typename T> vc<T> rearrange(const vc<T> &A, const vc<int> &I) { vc<T> B(len(I)); FOR(i, len(I)) B[i] = A[I[i]]; return B; } template <typename T, typename... Vectors> void concat(vc<T> &first, const Vectors &... others) { vc<T> &res = first; (res.insert(res.end(), others.begin(), others.end()), ...); } #endif #line 1 "other/io.hpp" #define FASTIO #include <unistd.h> // https://judge.yosupo.jp/submission/21623 namespace fastio { static constexpr uint32_t SZ = 1 << 17; char ibuf[SZ]; char obuf[SZ]; char out[100]; // pointer of ibuf, obuf uint32_t pil = 0, pir = 0, por = 0; struct Pre { char num[10000][4]; constexpr Pre() : num() { for (int i = 0; i < 10000; i++) { int n = i; for (int j = 3; j >= 0; j--) { num[i][j] = n % 10 | '0'; n /= 10; } } } } constexpr pre; inline void load() { memcpy(ibuf, ibuf + pil, pir - pil); pir = pir - pil + fread(ibuf + pir - pil, 1, SZ - pir + pil, stdin); pil = 0; if (pir < SZ) ibuf[pir++] = '\n'; } inline void flush() { fwrite(obuf, 1, por, stdout); por = 0; } void rd(char &c) { do { if (pil + 1 > pir) load(); c = ibuf[pil++]; } while (isspace(c)); } void rd(string &x) { x.clear(); char c; do { if (pil + 1 > pir) load(); c = ibuf[pil++]; } while (isspace(c)); do { x += c; if (pil == pir) load(); c = ibuf[pil++]; } while (!isspace(c)); } template <typename T> void rd_real(T &x) { string s; rd(s); x = stod(s); } template <typename T> void rd_integer(T &x) { if (pil + 100 > pir) load(); char c; do c = ibuf[pil++]; while (c < '-'); bool minus = 0; if constexpr (is_signed<T>::value || is_same_v<T, i128>) { if (c == '-') { minus = 1, c = ibuf[pil++]; } } x = 0; while ('0' <= c) { x = x * 10 + (c & 15), c = ibuf[pil++]; } if constexpr (is_signed<T>::value || is_same_v<T, i128>) { if (minus) x = -x; } } void rd(int &x) { rd_integer(x); } void rd(ll &x) { rd_integer(x); } void rd(i128 &x) { rd_integer(x); } void rd(u32 &x) { rd_integer(x); } void rd(u64 &x) { rd_integer(x); } void rd(u128 &x) { rd_integer(x); } void rd(double &x) { rd_real(x); } void rd(long double &x) { rd_real(x); } void rd(f128 &x) { rd_real(x); } template <class T, class U> void rd(pair<T, U> &p) { return rd(p.first), rd(p.second); } template <size_t N = 0, typename T> void rd_tuple(T &t) { if constexpr (N < std::tuple_size<T>::value) { auto &x = std::get<N>(t); rd(x); rd_tuple<N + 1>(t); } } template <class... T> void rd(tuple<T...> &tpl) { rd_tuple(tpl); } template <size_t N = 0, typename T> void rd(array<T, N> &x) { for (auto &d: x) rd(d); } template <class T> void rd(vc<T> &x) { for (auto &d: x) rd(d); } void read() {} template <class H, class... T> void read(H &h, T &... t) { rd(h), read(t...); } void wt(const char c) { if (por == SZ) flush(); obuf[por++] = c; } void wt(const string s) { for (char c: s) wt(c); } void wt(const char *s) { size_t len = strlen(s); for (size_t i = 0; i < len; i++) wt(s[i]); } template <typename T> void wt_integer(T x) { if (por > SZ - 100) flush(); if (x < 0) { obuf[por++] = '-', x = -x; } int outi; for (outi = 96; x >= 10000; outi -= 4) { memcpy(out + outi, pre.num[x % 10000], 4); x /= 10000; } if (x >= 1000) { memcpy(obuf + por, pre.num[x], 4); por += 4; } else if (x >= 100) { memcpy(obuf + por, pre.num[x] + 1, 3); por += 3; } else if (x >= 10) { int q = (x * 103) >> 10; obuf[por] = q | '0'; obuf[por + 1] = (x - q * 10) | '0'; por += 2; } else obuf[por++] = x | '0'; memcpy(obuf + por, out + outi + 4, 96 - outi); por += 96 - outi; } template <typename T> void wt_real(T x) { ostringstream oss; oss << fixed << setprecision(15) << double(x); string s = oss.str(); wt(s); } void wt(int x) { wt_integer(x); } void wt(ll x) { wt_integer(x); } void wt(i128 x) { wt_integer(x); } void wt(u32 x) { wt_integer(x); } void wt(u64 x) { wt_integer(x); } void wt(u128 x) { wt_integer(x); } void wt(double x) { wt_real(x); } void wt(long double x) { wt_real(x); } void wt(f128 x) { wt_real(x); } template <class T, class U> void wt(const pair<T, U> val) { wt(val.first); wt(' '); wt(val.second); } template <size_t N = 0, typename T> void wt_tuple(const T t) { if constexpr (N < std::tuple_size<T>::value) { if constexpr (N > 0) { wt(' '); } const auto x = std::get<N>(t); wt(x); wt_tuple<N + 1>(t); } } template <class... T> void wt(tuple<T...> tpl) { wt_tuple(tpl); } template <class T, size_t S> void wt(const array<T, S> val) { auto n = val.size(); for (size_t i = 0; i < n; i++) { if (i) wt(' '); wt(val[i]); } } template <class T> void wt(const vector<T> val) { auto n = val.size(); for (size_t i = 0; i < n; i++) { if (i) wt(' '); wt(val[i]); } } void print() { wt('\n'); } template <class Head, class... Tail> void print(Head &&head, Tail &&... tail) { wt(head); if (sizeof...(Tail)) wt(' '); print(forward<Tail>(tail)...); } // gcc expansion. called automaticall after main. void __attribute__((destructor)) _d() { flush(); } } // namespace fastio using fastio::read; using fastio::print; using fastio::flush; #if defined(LOCAL) #define SHOW(...) SHOW_IMPL(__VA_ARGS__, SHOW6, SHOW5, SHOW4, SHOW3, SHOW2, SHOW1)(__VA_ARGS__) #define SHOW_IMPL(_1, _2, _3, _4, _5, _6, NAME, ...) NAME #define SHOW1(x) print(#x, "=", (x)), flush() #define SHOW2(x, y) print(#x, "=", (x), #y, "=", (y)), flush() #define SHOW3(x, y, z) print(#x, "=", (x), #y, "=", (y), #z, "=", (z)), flush() #define SHOW4(x, y, z, w) print(#x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w)), flush() #define SHOW5(x, y, z, w, v) print(#x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w), #v, "=", (v)), flush() #define SHOW6(x, y, z, w, v, u) print(#x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w), #v, "=", (v), #u, "=", (u)), flush() #else #define SHOW(...) #endif #define INT(...) \ int __VA_ARGS__; \ read(__VA_ARGS__) #define LL(...) \ ll __VA_ARGS__; \ read(__VA_ARGS__) #define U32(...) \ u32 __VA_ARGS__; \ read(__VA_ARGS__) #define U64(...) \ u64 __VA_ARGS__; \ read(__VA_ARGS__) #define STR(...) \ string __VA_ARGS__; \ read(__VA_ARGS__) #define CHAR(...) \ char __VA_ARGS__; \ read(__VA_ARGS__) #define DBL(...) \ double __VA_ARGS__; \ read(__VA_ARGS__) #define VEC(type, name, size) \ vector<type> name(size); \ read(name) #define VV(type, name, h, w) \ vector<vector<type>> name(h, vector<type>(w)); \ read(name) void YES(bool t = 1) { print(t ? "YES" : "NO"); } void NO(bool t = 1) { YES(!t); } void Yes(bool t = 1) { print(t ? "Yes" : "No"); } void No(bool t = 1) { Yes(!t); } void yes(bool t = 1) { print(t ? "yes" : "no"); } void no(bool t = 1) { yes(!t); } #line 4 "test/3_yukicoder/2361.test.cpp" #line 2 "string/suffix_array.hpp" #line 2 "alg/monoid/min.hpp" template <typename E> struct Monoid_Min { using X = E; using value_type = X; static constexpr X op(const X &x, const X &y) noexcept { return min(x, y); } static constexpr X unit() { return infty<E>; } static constexpr bool commute = true; }; #line 2 "ds/sparse_table/sparse_table.hpp" // 冪等なモノイドであることを仮定。disjoint sparse table より x 倍高速 template <class Monoid> struct Sparse_Table { using MX = Monoid; using X = typename MX::value_type; int n, log; vvc<X> dat; Sparse_Table() {} Sparse_Table(int n) { build(n); } template <typename F> Sparse_Table(int n, F f) { build(n, f); } Sparse_Table(const vc<X>& v) { build(v); } void build(int m) { build(m, [](int i) -> X { return MX::unit(); }); } void build(const vc<X>& v) { build(len(v), [&](int i) -> X { return v[i]; }); } template <typename F> void build(int m, F f) { n = m, log = 1; while ((1 << log) < n) ++log; dat.resize(log); dat[0].resize(n); FOR(i, n) dat[0][i] = f(i); FOR(i, log - 1) { dat[i + 1].resize(len(dat[i]) - (1 << i)); FOR(j, len(dat[i]) - (1 << i)) { dat[i + 1][j] = MX::op(dat[i][j], dat[i][j + (1 << i)]); } } } X prod(int L, int R) { if (L == R) return MX::unit(); if (R == L + 1) return dat[0][L]; int k = topbit(R - L - 1); return MX::op(dat[k][L], dat[k][R - (1 << k)]); } template <class F> int max_right(const F check, int L) { assert(0 <= L && L <= n && check(MX::unit())); if (L == n) return n; int ok = L, ng = n + 1; while (ok + 1 < ng) { int k = (ok + ng) / 2; bool bl = check(prod(L, k)); if (bl) ok = k; if (!bl) ng = k; } return ok; } template <class F> int min_left(const F check, int R) { assert(0 <= R && R <= n && check(MX::unit())); if (R == 0) return 0; int ok = R, ng = -1; while (ng + 1 < ok) { int k = (ok + ng) / 2; bool bl = check(prod(k, R)); if (bl) ok = k; if (!bl) ng = k; } return ok; } }; #line 5 "string/suffix_array.hpp" // 辞書順 i 番目の suffix が j 文字目始まりであるとき、 // SA[i] = j, ISA[j] = i // |S|>0 を前提(そうでない場合 dummy 文字を追加して利用せよ) struct Suffix_Array { vc<int> SA; vc<int> ISA; vc<int> LCP; Sparse_Table<Monoid_Min<int>> seg; bool build_seg; Suffix_Array(string& s) { build_seg = 0; assert(len(s) > 0); char first = 127, last = 0; for (auto&& c: s) { chmin(first, c); chmax(last, c); } SA = calc_suffix_array(s, first, last); calc_LCP(s); } Suffix_Array(vc<int>& s) { build_seg = 0; assert(len(s) > 0); SA = calc_suffix_array(s); calc_LCP(s); } // lcp(S[i:], S[j:]) int lcp(int i, int j) { if (!build_seg) { build_seg = true; seg.build(LCP); } int n = len(SA); if (i == n || j == n) return 0; if (i == j) return n - i; i = ISA[i], j = ISA[j]; if (i > j) swap(i, j); return seg.prod(i, j); } // S[i:] との lcp が n 以上であるような半開区間 pair<int, int> lcp_range(int i, int n) { if (!build_seg) { build_seg = true; seg.build(LCP); } i = ISA[i]; int a = seg.min_left([&](auto e) -> bool { return e >= n; }, i); int b = seg.max_right([&](auto e) -> bool { return e >= n; }, i); return {a, b + 1}; } // -1: S[L1:R1) < S[L2, R2) // 0: S[L1:R1) = S[L2, R2) // +1: S[L1:R1) > S[L2, R2) int compare(int L1, int R1, int L2, int R2) { int n1 = R1 - L1, n2 = R2 - L2; int n = lcp(L1, L2); if (n == n1 && n == n2) return 0; if (n == n1) return -1; if (n == n2) return 1; return (ISA[L1 + n] > ISA[L2 + n] ? 1 : -1); } private: void induced_sort(const vc<int>& vect, int val_range, vc<int>& SA, const vc<bool>& sl, const vc<int>& lms_idx) { vc<int> l(val_range, 0), r(val_range, 0); for (int c: vect) { if (c + 1 < val_range) ++l[c + 1]; ++r[c]; } partial_sum(l.begin(), l.end(), l.begin()); partial_sum(r.begin(), r.end(), r.begin()); fill(SA.begin(), SA.end(), -1); for (int i = (int)lms_idx.size() - 1; i >= 0; --i) SA[--r[vect[lms_idx[i]]]] = lms_idx[i]; for (int i: SA) if (i >= 1 && sl[i - 1]) SA[l[vect[i - 1]]++] = i - 1; fill(r.begin(), r.end(), 0); for (int c: vect) ++r[c]; partial_sum(r.begin(), r.end(), r.begin()); for (int k = (int)SA.size() - 1, i = SA[k]; k >= 1; --k, i = SA[k]) if (i >= 1 && !sl[i - 1]) { SA[--r[vect[i - 1]]] = i - 1; } } vc<int> SA_IS(const vc<int>& vect, int val_range) { const int n = vect.size(); vc<int> SA(n), lms_idx; vc<bool> sl(n); sl[n - 1] = false; for (int i = n - 2; i >= 0; --i) { sl[i] = (vect[i] > vect[i + 1] || (vect[i] == vect[i + 1] && sl[i + 1])); if (sl[i] && !sl[i + 1]) lms_idx.push_back(i + 1); } reverse(lms_idx.begin(), lms_idx.end()); induced_sort(vect, val_range, SA, sl, lms_idx); vc<int> new_lms_idx(lms_idx.size()), lms_vec(lms_idx.size()); for (int i = 0, k = 0; i < n; ++i) if (!sl[SA[i]] && SA[i] >= 1 && sl[SA[i] - 1]) { new_lms_idx[k++] = SA[i]; } int cur = 0; SA[n - 1] = cur; for (size_t k = 1; k < new_lms_idx.size(); ++k) { int i = new_lms_idx[k - 1], j = new_lms_idx[k]; if (vect[i] != vect[j]) { SA[j] = ++cur; continue; } bool flag = false; for (int a = i + 1, b = j + 1;; ++a, ++b) { if (vect[a] != vect[b]) { flag = true; break; } if ((!sl[a] && sl[a - 1]) || (!sl[b] && sl[b - 1])) { flag = !((!sl[a] && sl[a - 1]) && (!sl[b] && sl[b - 1])); break; } } SA[j] = (flag ? ++cur : cur); } for (size_t i = 0; i < lms_idx.size(); ++i) lms_vec[i] = SA[lms_idx[i]]; if (cur + 1 < (int)lms_idx.size()) { auto lms_SA = SA_IS(lms_vec, cur + 1); for (size_t i = 0; i < lms_idx.size(); ++i) { new_lms_idx[i] = lms_idx[lms_SA[i]]; } } induced_sort(vect, val_range, SA, sl, new_lms_idx); return SA; } vc<int> calc_suffix_array(const string& s, const char first = 'a', const char last = 'z') { vc<int> vect(s.size() + 1); copy(begin(s), end(s), begin(vect)); for (auto& x: vect) x -= (int)first - 1; vect.back() = 0; auto ret = SA_IS(vect, (int)last - (int)first + 2); ret.erase(ret.begin()); return ret; } vc<int> calc_suffix_array(const vc<int>& s) { vc<int> ss = s; UNIQUE(ss); vc<int> vect(s.size() + 1); copy(all(s), vect.begin()); for (auto& x: vect) x = LB(ss, x) + 1; vect.back() = 0; auto ret = SA_IS(vect, MAX(vect) + 2); ret.erase(ret.begin()); return ret; } template <typename STRING> void calc_LCP(const STRING& s) { int n = s.size(), k = 0; ISA.resize(n); LCP.resize(n); for (int i = 0; i < n; i++) ISA[SA[i]] = i; for (int i = 0; i < n; i++, k ? k-- : 0) { if (ISA[i] == n - 1) { k = 0; continue; } int j = SA[ISA[i] + 1]; while (i + k < n && j + k < n && s[i + k] == s[j + k]) k++; LCP[ISA[i]] = k; } LCP.resize(n - 1); } }; #line 1 "string/suffix_tree.hpp" #line 1 "seq/cartesian_tree.hpp" /* 辞書順で高さを unique して、木にしている。 極大長方形アルゴリズムで線形時間構築。 */ template <typename T, bool IS_MIN> struct CartesianTree { int n; vc<T>& A; vc<pair<int, int>> range; vc<int> lch, rch, par; int root; CartesianTree(vc<T>& A) : n(len(A)), A(A) { range.assign(n, {-1, -1}); lch.assign(n, -1); rch.assign(n, -1); par.assign(n, -1); if (n == 1) { range[0] = {0, 1}; root = 0; return; } auto is_sm = [&](int i, int j) -> bool { if (IS_MIN) return (A[i] < A[j]) || (A[i] == A[j] && i < j); return (A[i] > A[j]) || (A[i] == A[j] && i < j); }; vc<int> st; FOR(i, n) { while (!st.empty() && is_sm(i, st.back())) { lch[i] = st.back(); st.pop_back(); } range[i].fi = (st.empty() ? 0 : st.back() + 1); st.eb(i); } st.clear(); FOR_R(i, n) { while (!st.empty() && is_sm(i, st.back())) { rch[i] = st.back(); st.pop_back(); } range[i].se = (st.empty() ? n : st.back()); st.eb(i); } FOR(i, n) if (lch[i] != -1) par[lch[i]] = i; FOR(i, n) if (rch[i] != -1) par[rch[i]] = i; FOR(i, n) if (par[i] == -1) root = i; } // (l, r, h) tuple<int, int, T> maximum_rectangle(int i) { auto [l, r] = range[i]; return {l, r, A[i]}; } // (l, r, h) T max_rectangle_area() { assert(IS_MIN); T res = 0; FOR(i, n) { auto [l, r, h] = maximum_rectangle(i); chmax(res, (r - l) * h); } return res; } ll count_subrectangle(bool baseline) { assert(IS_MIN); ll res = 0; FOR(i, n) { auto [l, r, h] = maximum_rectangle(i); ll x = (baseline ? h : h * (h + 1) / 2); res += x * (i - l + 1) * (r - i); } return res; } }; #line 2 "graph/base.hpp" template <typename T> struct Edge { int frm, to; T cost; int id; }; template <typename T = int, bool directed = false> struct Graph { static constexpr bool is_directed = directed; int N, M; using cost_type = T; using edge_type = Edge<T>; vector<edge_type> edges; vector<int> indptr; vector<edge_type> csr_edges; vc<int> vc_deg, vc_indeg, vc_outdeg; bool prepared; class OutgoingEdges { public: OutgoingEdges(const Graph* G, int l, int r) : G(G), l(l), r(r) {} const edge_type* begin() const { if (l == r) { return 0; } return &G->csr_edges[l]; } const edge_type* end() const { if (l == r) { return 0; } return &G->csr_edges[r]; } private: const Graph* G; int l, r; }; bool is_prepared() { return prepared; } Graph() : N(0), M(0), prepared(0) {} Graph(int N) : N(N), M(0), prepared(0) {} void build(int n) { N = n, M = 0; prepared = 0; edges.clear(); indptr.clear(); csr_edges.clear(); vc_deg.clear(); vc_indeg.clear(); vc_outdeg.clear(); } void add(int frm, int to, T cost = 1, int i = -1) { assert(!prepared); assert(0 <= frm && 0 <= to && to < N); if (i == -1) i = M; auto e = edge_type({frm, to, cost, i}); edges.eb(e); ++M; } #ifdef FASTIO // wt, off void read_tree(bool wt = false, int off = 1) { read_graph(N - 1, wt, off); } void read_graph(int M, bool wt = false, int off = 1) { for (int m = 0; m < M; ++m) { INT(a, b); a -= off, b -= off; if (!wt) { add(a, b); } else { T c; read(c); add(a, b, c); } } build(); } #endif void build() { assert(!prepared); prepared = true; indptr.assign(N + 1, 0); for (auto&& e: edges) { indptr[e.frm + 1]++; if (!directed) indptr[e.to + 1]++; } for (int v = 0; v < N; ++v) { indptr[v + 1] += indptr[v]; } auto counter = indptr; csr_edges.resize(indptr.back() + 1); for (auto&& e: edges) { csr_edges[counter[e.frm]++] = e; if (!directed) csr_edges[counter[e.to]++] = edge_type({e.to, e.frm, e.cost, e.id}); } } OutgoingEdges operator[](int v) const { assert(prepared); return {this, indptr[v], indptr[v + 1]}; } vc<int> deg_array() { if (vc_deg.empty()) calc_deg(); return vc_deg; } pair<vc<int>, vc<int>> deg_array_inout() { if (vc_indeg.empty()) calc_deg_inout(); return {vc_indeg, vc_outdeg}; } int deg(int v) { if (vc_deg.empty()) calc_deg(); return vc_deg[v]; } int in_deg(int v) { if (vc_indeg.empty()) calc_deg_inout(); return vc_indeg[v]; } int out_deg(int v) { if (vc_outdeg.empty()) calc_deg_inout(); return vc_outdeg[v]; } #ifdef FASTIO void debug() { print("Graph"); if (!prepared) { print("frm to cost id"); for (auto&& e: edges) print(e.frm, e.to, e.cost, e.id); } else { print("indptr", indptr); print("frm to cost id"); FOR(v, N) for (auto&& e: (*this)[v]) print(e.frm, e.to, e.cost, e.id); } } #endif vc<int> new_idx; vc<bool> used_e; // G における頂点 V[i] が、新しいグラフで i になるようにする // {G, es} // sum(deg(v)) の計算量になっていて、 // 新しいグラフの n+m より大きい可能性があるので注意 Graph<T, directed> rearrange(vc<int> V, bool keep_eid = 0) { if (len(new_idx) != N) new_idx.assign(N, -1); int n = len(V); FOR(i, n) new_idx[V[i]] = i; Graph<T, directed> G(n); vc<int> history; FOR(i, n) { for (auto&& e: (*this)[V[i]]) { if (len(used_e) <= e.id) used_e.resize(e.id + 1); if (used_e[e.id]) continue; int a = e.frm, b = e.to; if (new_idx[a] != -1 && new_idx[b] != -1) { history.eb(e.id); used_e[e.id] = 1; int eid = (keep_eid ? e.id : -1); G.add(new_idx[a], new_idx[b], e.cost, eid); } } } FOR(i, n) new_idx[V[i]] = -1; for (auto&& eid: history) used_e[eid] = 0; G.build(); return G; } Graph<T, true> to_directed_tree(int root = -1) { if (root == -1) root = 0; assert(!is_directed && prepared && M == N - 1); Graph<T, true> G1(N); vc<int> par(N, -1); auto dfs = [&](auto& dfs, int v) -> void { for (auto& e: (*this)[v]) { if (e.to == par[v]) continue; par[e.to] = v, dfs(dfs, e.to); } }; dfs(dfs, root); for (auto& e: edges) { int a = e.frm, b = e.to; if (par[a] == b) swap(a, b); assert(par[b] == a); G1.add(a, b, e.cost); } G1.build(); return G1; } private: void calc_deg() { assert(vc_deg.empty()); vc_deg.resize(N); for (auto&& e: edges) vc_deg[e.frm]++, vc_deg[e.to]++; } void calc_deg_inout() { assert(vc_indeg.empty()); vc_indeg.resize(N); vc_outdeg.resize(N); for (auto&& e: edges) { vc_indeg[e.to]++, vc_outdeg[e.frm]++; } } }; #line 5 "string/suffix_tree.hpp" // https://twitter.com/maspy_stars/status/1565901414236205057?s=20&t=S2Tu6ayozHcakxai8dmh4g // 各ノードは、suffix array での長方形領域と見なして、 // グラフおよび、領域データを作る。 // sample: test/my_test/suffix_tree.test.cpp template <typename SUFFIX> pair<Graph<int, 1>, vc<tuple<int, int, int, int>>> suffix_tree(SUFFIX& X) { auto SA = X.SA; auto ISA = X.ISA; auto LCP = X.LCP; vc<tuple<int, int, int, int>> dat; vc<pair<int, int>> edges; int N = len(SA); if (N == 1) { Graph<int, 1> G(2); G.add(0, 1); G.build(); dat.eb(0, 1, 1, 1), dat.eb(0, 1, 1, 2); return {G, dat}; } dat.eb(0, N, 0, 0); CartesianTree<int, true> CT(LCP); auto dfs = [&](auto& dfs, int p, int idx, int h) -> void { int L = CT.range[idx].fi; int R = CT.range[idx].se + 1; int hh = LCP[idx]; if (h < hh) { edges.eb(p, len(dat)); p = len(dat); dat.eb(L, R, h, hh); } if (CT.lch[idx] == -1) { if (hh < N - SA[idx]) { edges.eb(p, len(dat)); dat.eb(idx, idx + 1, hh, N - SA[idx]); } } else { dfs(dfs, p, CT.lch[idx], hh); } if (CT.rch[idx] == -1) { if (hh < N - SA[idx + 1]) { edges.eb(p, len(dat)); dat.eb(idx + 1, idx + 2, hh, N - SA[idx + 1]); } } else { dfs(dfs, p, CT.rch[idx], hh); } }; int r = CT.root; if (LCP[r] > 0) { edges.eb(0, 1); dat.eb(0, N, 0, LCP[r]); dfs(dfs, 1, r, LCP[r]); } else { dfs(dfs, 0, r, 0); } for (auto& [a, b, c, d]: dat) ++c, ++d; Graph<int, 1> G(len(dat)); for (auto&& [a, b]: edges) G.add(a, b); G.build(); return {G, dat}; } #line 2 "alg/monoid/min_idx.hpp" template <typename T, bool tie_is_left = true> struct Monoid_Min_Idx { using value_type = pair<T, int>; using X = value_type; static constexpr bool is_small(const X& x, const X& y) { if (x.fi < y.fi) return true; if (x.fi > y.fi) return false; return (tie_is_left ? (x.se < y.se) : (x.se >= y.se)); } static X op(X x, X y) { return (is_small(x, y) ? x : y); } static constexpr X unit() { return {infty<T>, -1}; } static constexpr bool commute = true; }; #line 2 "ds/segtree/segtree.hpp" template <class Monoid> struct SegTree { using MX = Monoid; using X = typename MX::value_type; using value_type = X; vc<X> dat; int n, log, size; SegTree() {} SegTree(int n) { build(n); } template <typename F> SegTree(int n, F f) { build(n, f); } SegTree(const vc<X>& v) { build(v); } void build(int m) { build(m, [](int i) -> X { return MX::unit(); }); } void build(const vc<X>& v) { build(len(v), [&](int i) -> X { return v[i]; }); } template <typename F> void build(int m, F f) { n = m, log = 1; while ((1 << log) < n) ++log; size = 1 << log; dat.assign(size << 1, MX::unit()); FOR(i, n) dat[size + i] = f(i); FOR_R(i, 1, size) update(i); } X get(int i) { return dat[size + i]; } vc<X> get_all() { return {dat.begin() + size, dat.begin() + size + n}; } void update(int i) { dat[i] = Monoid::op(dat[2 * i], dat[2 * i + 1]); } void set(int i, const X& x) { assert(i < n); dat[i += size] = x; while (i >>= 1) update(i); } void multiply(int i, const X& x) { assert(i < n); i += size; dat[i] = Monoid::op(dat[i], x); while (i >>= 1) update(i); } X prod(int L, int R) { assert(0 <= L && L <= R && R <= n); X vl = Monoid::unit(), vr = Monoid::unit(); L += size, R += size; while (L < R) { if (L & 1) vl = Monoid::op(vl, dat[L++]); if (R & 1) vr = Monoid::op(dat[--R], vr); L >>= 1, R >>= 1; } return Monoid::op(vl, vr); } X prod_all() { return dat[1]; } template <class F> int max_right(F check, int L) { assert(0 <= L && L <= n && check(Monoid::unit())); if (L == n) return n; L += size; X sm = Monoid::unit(); do { while (L % 2 == 0) L >>= 1; if (!check(Monoid::op(sm, dat[L]))) { while (L < size) { L = 2 * L; if (check(Monoid::op(sm, dat[L]))) { sm = Monoid::op(sm, dat[L++]); } } return L - size; } sm = Monoid::op(sm, dat[L++]); } while ((L & -L) != L); return n; } template <class F> int min_left(F check, int R) { assert(0 <= R && R <= n && check(Monoid::unit())); if (R == 0) return 0; R += size; X sm = Monoid::unit(); do { --R; while (R > 1 && (R % 2)) R >>= 1; if (!check(Monoid::op(dat[R], sm))) { while (R < size) { R = 2 * R + 1; if (check(Monoid::op(dat[R], sm))) { sm = Monoid::op(dat[R--], sm); } } return R + 1 - size; } sm = Monoid::op(dat[R], sm); } while ((R & -R) != R); return 0; } // prod_{l<=i<r} A[i xor x] X xor_prod(int l, int r, int xor_val) { static_assert(Monoid::commute); X x = Monoid::unit(); for (int k = 0; k < log + 1; ++k) { if (l >= r) break; if (l & 1) { x = Monoid::op(x, dat[(size >> k) + ((l++) ^ xor_val)]); } if (r & 1) { x = Monoid::op(x, dat[(size >> k) + ((--r) ^ xor_val)]); } l /= 2, r /= 2, xor_val /= 2; } return x; } }; #line 9 "test/3_yukicoder/2361.test.cpp" void solve() { LL(N, Q); STR(S); Suffix_Array X(S); VEC(pi, query, Q); for (auto&& [a, b]: query) --a; // 場所 -> 長さ, クエリ番号 vvc<pi> dat(N); FOR(q, Q) { auto [a, b] = query[q]; ll n = b - a; dat[X.ISA[a]].eb(n, q); } FOR(i, N) { sort(all(dat[i])); reverse(all(dat[i])); } SegTree<Monoid_Min_Idx<int>> seg(N); auto upd = [&](int i) -> void { if (dat[i].empty()) seg.set(i, {infty<int>, -1}); else seg.set(i, {dat[i].back().fi, i}); }; FOR(i, N) upd(i); vi ANS(Q); Graph<int, 1> G; vc<tuple<int, int, int, int>> rect; tie(G, rect) = suffix_tree(X); ll vis = 0; auto dfs = [&](auto& dfs, int v) -> void { auto [L, R, a, b] = rect[v]; while (1) { auto [mi, idx] = seg.prod(L, R); if (mi >= b) break; auto [sz, qid] = POP(dat[idx]); assert(sz == mi); upd(idx); ll ans = vis; ans += (mi - a) * (R - L); ANS[qid] = ans; } vis += (R - L) * (b - a); for (auto&& e: G[v]) dfs(dfs, e.to); }; dfs(dfs, 0); for (auto&& x: ANS) print(x); } signed main() { solve(); return 0; }