This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub maspypy/library
#include "string/suffix_tree.hpp"
#include "string/suffix_array.hpp" #include "seq/cartesian_tree.hpp" #include "graph/base.hpp" // https://twitter.com/maspy_stars/status/1565901414236205057?s=20&t=S2Tu6ayozHcakxai8dmh4g // 各ノードは、suffix array での長方形領域と見なして、 // グラフおよび、領域データを作る。 // sample: test/my_test/suffix_tree.test.cpp template <typename SUFFIX> pair<Graph<int, 1>, vc<tuple<int, int, int, int>>> suffix_tree(SUFFIX& X) { auto SA = X.SA; auto ISA = X.ISA; auto LCP = X.LCP; vc<tuple<int, int, int, int>> dat; vc<pair<int, int>> edges; int N = len(SA); if (N == 1) { Graph<int, 1> G(2); G.add(0, 1); G.build(); dat.eb(0, 1, 1, 1), dat.eb(0, 1, 1, 2); return {G, dat}; } dat.eb(0, N, 0, 0); CartesianTree<int, true> CT(LCP); auto dfs = [&](auto& dfs, int p, int idx, int h) -> void { int L = CT.range[idx].fi; int R = CT.range[idx].se + 1; int hh = LCP[idx]; if (h < hh) { edges.eb(p, len(dat)); p = len(dat); dat.eb(L, R, h, hh); } if (CT.lch[idx] == -1) { if (hh < N - SA[idx]) { edges.eb(p, len(dat)); dat.eb(idx, idx + 1, hh, N - SA[idx]); } } else { dfs(dfs, p, CT.lch[idx], hh); } if (CT.rch[idx] == -1) { if (hh < N - SA[idx + 1]) { edges.eb(p, len(dat)); dat.eb(idx + 1, idx + 2, hh, N - SA[idx + 1]); } } else { dfs(dfs, p, CT.rch[idx], hh); } }; int r = CT.root; if (LCP[r] > 0) { edges.eb(0, 1); dat.eb(0, N, 0, LCP[r]); dfs(dfs, 1, r, LCP[r]); } else { dfs(dfs, 0, r, 0); } for (auto& [a, b, c, d]: dat) ++c, ++d; Graph<int, 1> G(len(dat)); for (auto&& [a, b]: edges) G.add(a, b); G.build(); return {G, dat}; }
#line 1 "string/suffix_tree.hpp" #line 2 "string/suffix_array.hpp" #line 2 "alg/monoid/min.hpp" template <typename E> struct Monoid_Min { using X = E; using value_type = X; static constexpr X op(const X &x, const X &y) noexcept { return min(x, y); } static constexpr X unit() { return infty<E>; } static constexpr bool commute = true; }; #line 2 "ds/sparse_table/sparse_table.hpp" // 冪等なモノイドであることを仮定。disjoint sparse table より x 倍高速 template <class Monoid> struct Sparse_Table { using MX = Monoid; using X = typename MX::value_type; int n, log; vvc<X> dat; Sparse_Table() {} Sparse_Table(int n) { build(n); } template <typename F> Sparse_Table(int n, F f) { build(n, f); } Sparse_Table(const vc<X>& v) { build(v); } void build(int m) { build(m, [](int i) -> X { return MX::unit(); }); } void build(const vc<X>& v) { build(len(v), [&](int i) -> X { return v[i]; }); } template <typename F> void build(int m, F f) { n = m, log = 1; while ((1 << log) < n) ++log; dat.resize(log); dat[0].resize(n); FOR(i, n) dat[0][i] = f(i); FOR(i, log - 1) { dat[i + 1].resize(len(dat[i]) - (1 << i)); FOR(j, len(dat[i]) - (1 << i)) { dat[i + 1][j] = MX::op(dat[i][j], dat[i][j + (1 << i)]); } } } X prod(int L, int R) { if (L == R) return MX::unit(); if (R == L + 1) return dat[0][L]; int k = topbit(R - L - 1); return MX::op(dat[k][L], dat[k][R - (1 << k)]); } template <class F> int max_right(const F check, int L) { assert(0 <= L && L <= n && check(MX::unit())); if (L == n) return n; int ok = L, ng = n + 1; while (ok + 1 < ng) { int k = (ok + ng) / 2; bool bl = check(prod(L, k)); if (bl) ok = k; if (!bl) ng = k; } return ok; } template <class F> int min_left(const F check, int R) { assert(0 <= R && R <= n && check(MX::unit())); if (R == 0) return 0; int ok = R, ng = -1; while (ng + 1 < ok) { int k = (ok + ng) / 2; bool bl = check(prod(k, R)); if (bl) ok = k; if (!bl) ng = k; } return ok; } }; #line 5 "string/suffix_array.hpp" // 辞書順 i 番目の suffix が j 文字目始まりであるとき、 // SA[i] = j, ISA[j] = i // |S|>0 を前提(そうでない場合 dummy 文字を追加して利用せよ) struct Suffix_Array { vc<int> SA; vc<int> ISA; vc<int> LCP; Sparse_Table<Monoid_Min<int>> seg; bool build_seg; Suffix_Array(string& s) { build_seg = 0; assert(len(s) > 0); char first = 127, last = 0; for (auto&& c: s) { chmin(first, c); chmax(last, c); } SA = calc_suffix_array(s, first, last); calc_LCP(s); } Suffix_Array(vc<int>& s) { build_seg = 0; assert(len(s) > 0); SA = calc_suffix_array(s); calc_LCP(s); } // lcp(S[i:], S[j:]) int lcp(int i, int j) { if (!build_seg) { build_seg = true; seg.build(LCP); } int n = len(SA); if (i == n || j == n) return 0; if (i == j) return n - i; i = ISA[i], j = ISA[j]; if (i > j) swap(i, j); return seg.prod(i, j); } // S[i:] との lcp が n 以上であるような半開区間 pair<int, int> lcp_range(int i, int n) { if (!build_seg) { build_seg = true; seg.build(LCP); } i = ISA[i]; int a = seg.min_left([&](auto e) -> bool { return e >= n; }, i); int b = seg.max_right([&](auto e) -> bool { return e >= n; }, i); return {a, b + 1}; } // -1: S[L1:R1) < S[L2, R2) // 0: S[L1:R1) = S[L2, R2) // +1: S[L1:R1) > S[L2, R2) int compare(int L1, int R1, int L2, int R2) { int n1 = R1 - L1, n2 = R2 - L2; int n = lcp(L1, L2); if (n == n1 && n == n2) return 0; if (n == n1) return -1; if (n == n2) return 1; return (ISA[L1 + n] > ISA[L2 + n] ? 1 : -1); } private: void induced_sort(const vc<int>& vect, int val_range, vc<int>& SA, const vc<bool>& sl, const vc<int>& lms_idx) { vc<int> l(val_range, 0), r(val_range, 0); for (int c: vect) { if (c + 1 < val_range) ++l[c + 1]; ++r[c]; } partial_sum(l.begin(), l.end(), l.begin()); partial_sum(r.begin(), r.end(), r.begin()); fill(SA.begin(), SA.end(), -1); for (int i = (int)lms_idx.size() - 1; i >= 0; --i) SA[--r[vect[lms_idx[i]]]] = lms_idx[i]; for (int i: SA) if (i >= 1 && sl[i - 1]) SA[l[vect[i - 1]]++] = i - 1; fill(r.begin(), r.end(), 0); for (int c: vect) ++r[c]; partial_sum(r.begin(), r.end(), r.begin()); for (int k = (int)SA.size() - 1, i = SA[k]; k >= 1; --k, i = SA[k]) if (i >= 1 && !sl[i - 1]) { SA[--r[vect[i - 1]]] = i - 1; } } vc<int> SA_IS(const vc<int>& vect, int val_range) { const int n = vect.size(); vc<int> SA(n), lms_idx; vc<bool> sl(n); sl[n - 1] = false; for (int i = n - 2; i >= 0; --i) { sl[i] = (vect[i] > vect[i + 1] || (vect[i] == vect[i + 1] && sl[i + 1])); if (sl[i] && !sl[i + 1]) lms_idx.push_back(i + 1); } reverse(lms_idx.begin(), lms_idx.end()); induced_sort(vect, val_range, SA, sl, lms_idx); vc<int> new_lms_idx(lms_idx.size()), lms_vec(lms_idx.size()); for (int i = 0, k = 0; i < n; ++i) if (!sl[SA[i]] && SA[i] >= 1 && sl[SA[i] - 1]) { new_lms_idx[k++] = SA[i]; } int cur = 0; SA[n - 1] = cur; for (size_t k = 1; k < new_lms_idx.size(); ++k) { int i = new_lms_idx[k - 1], j = new_lms_idx[k]; if (vect[i] != vect[j]) { SA[j] = ++cur; continue; } bool flag = false; for (int a = i + 1, b = j + 1;; ++a, ++b) { if (vect[a] != vect[b]) { flag = true; break; } if ((!sl[a] && sl[a - 1]) || (!sl[b] && sl[b - 1])) { flag = !((!sl[a] && sl[a - 1]) && (!sl[b] && sl[b - 1])); break; } } SA[j] = (flag ? ++cur : cur); } for (size_t i = 0; i < lms_idx.size(); ++i) lms_vec[i] = SA[lms_idx[i]]; if (cur + 1 < (int)lms_idx.size()) { auto lms_SA = SA_IS(lms_vec, cur + 1); for (size_t i = 0; i < lms_idx.size(); ++i) { new_lms_idx[i] = lms_idx[lms_SA[i]]; } } induced_sort(vect, val_range, SA, sl, new_lms_idx); return SA; } vc<int> calc_suffix_array(const string& s, const char first = 'a', const char last = 'z') { vc<int> vect(s.size() + 1); copy(begin(s), end(s), begin(vect)); for (auto& x: vect) x -= (int)first - 1; vect.back() = 0; auto ret = SA_IS(vect, (int)last - (int)first + 2); ret.erase(ret.begin()); return ret; } vc<int> calc_suffix_array(const vc<int>& s) { vc<int> ss = s; UNIQUE(ss); vc<int> vect(s.size() + 1); copy(all(s), vect.begin()); for (auto& x: vect) x = LB(ss, x) + 1; vect.back() = 0; auto ret = SA_IS(vect, MAX(vect) + 2); ret.erase(ret.begin()); return ret; } template <typename STRING> void calc_LCP(const STRING& s) { int n = s.size(), k = 0; ISA.resize(n); LCP.resize(n); for (int i = 0; i < n; i++) ISA[SA[i]] = i; for (int i = 0; i < n; i++, k ? k-- : 0) { if (ISA[i] == n - 1) { k = 0; continue; } int j = SA[ISA[i] + 1]; while (i + k < n && j + k < n && s[i + k] == s[j + k]) k++; LCP[ISA[i]] = k; } LCP.resize(n - 1); } }; #line 1 "seq/cartesian_tree.hpp" /* 辞書順で高さを unique して、木にしている。 極大長方形アルゴリズムで線形時間構築。 */ template <typename T, bool IS_MIN> struct CartesianTree { int n; vc<T>& A; vc<pair<int, int>> range; vc<int> lch, rch, par; int root; CartesianTree(vc<T>& A) : n(len(A)), A(A) { range.assign(n, {-1, -1}); lch.assign(n, -1); rch.assign(n, -1); par.assign(n, -1); if (n == 1) { range[0] = {0, 1}; root = 0; return; } auto is_sm = [&](int i, int j) -> bool { if (IS_MIN) return (A[i] < A[j]) || (A[i] == A[j] && i < j); return (A[i] > A[j]) || (A[i] == A[j] && i < j); }; vc<int> st; FOR(i, n) { while (!st.empty() && is_sm(i, st.back())) { lch[i] = st.back(); st.pop_back(); } range[i].fi = (st.empty() ? 0 : st.back() + 1); st.eb(i); } st.clear(); FOR_R(i, n) { while (!st.empty() && is_sm(i, st.back())) { rch[i] = st.back(); st.pop_back(); } range[i].se = (st.empty() ? n : st.back()); st.eb(i); } FOR(i, n) if (lch[i] != -1) par[lch[i]] = i; FOR(i, n) if (rch[i] != -1) par[rch[i]] = i; FOR(i, n) if (par[i] == -1) root = i; } // (l, r, h) tuple<int, int, T> maximum_rectangle(int i) { auto [l, r] = range[i]; return {l, r, A[i]}; } // (l, r, h) T max_rectangle_area() { assert(IS_MIN); T res = 0; FOR(i, n) { auto [l, r, h] = maximum_rectangle(i); chmax(res, (r - l) * h); } return res; } ll count_subrectangle(bool baseline) { assert(IS_MIN); ll res = 0; FOR(i, n) { auto [l, r, h] = maximum_rectangle(i); ll x = (baseline ? h : h * (h + 1) / 2); res += x * (i - l + 1) * (r - i); } return res; } }; #line 2 "graph/base.hpp" template <typename T> struct Edge { int frm, to; T cost; int id; }; template <typename T = int, bool directed = false> struct Graph { static constexpr bool is_directed = directed; int N, M; using cost_type = T; using edge_type = Edge<T>; vector<edge_type> edges; vector<int> indptr; vector<edge_type> csr_edges; vc<int> vc_deg, vc_indeg, vc_outdeg; bool prepared; class OutgoingEdges { public: OutgoingEdges(const Graph* G, int l, int r) : G(G), l(l), r(r) {} const edge_type* begin() const { if (l == r) { return 0; } return &G->csr_edges[l]; } const edge_type* end() const { if (l == r) { return 0; } return &G->csr_edges[r]; } private: const Graph* G; int l, r; }; bool is_prepared() { return prepared; } Graph() : N(0), M(0), prepared(0) {} Graph(int N) : N(N), M(0), prepared(0) {} void build(int n) { N = n, M = 0; prepared = 0; edges.clear(); indptr.clear(); csr_edges.clear(); vc_deg.clear(); vc_indeg.clear(); vc_outdeg.clear(); } void add(int frm, int to, T cost = 1, int i = -1) { assert(!prepared); assert(0 <= frm && 0 <= to && to < N); if (i == -1) i = M; auto e = edge_type({frm, to, cost, i}); edges.eb(e); ++M; } #ifdef FASTIO // wt, off void read_tree(bool wt = false, int off = 1) { read_graph(N - 1, wt, off); } void read_graph(int M, bool wt = false, int off = 1) { for (int m = 0; m < M; ++m) { INT(a, b); a -= off, b -= off; if (!wt) { add(a, b); } else { T c; read(c); add(a, b, c); } } build(); } #endif void build() { assert(!prepared); prepared = true; indptr.assign(N + 1, 0); for (auto&& e: edges) { indptr[e.frm + 1]++; if (!directed) indptr[e.to + 1]++; } for (int v = 0; v < N; ++v) { indptr[v + 1] += indptr[v]; } auto counter = indptr; csr_edges.resize(indptr.back() + 1); for (auto&& e: edges) { csr_edges[counter[e.frm]++] = e; if (!directed) csr_edges[counter[e.to]++] = edge_type({e.to, e.frm, e.cost, e.id}); } } OutgoingEdges operator[](int v) const { assert(prepared); return {this, indptr[v], indptr[v + 1]}; } vc<int> deg_array() { if (vc_deg.empty()) calc_deg(); return vc_deg; } pair<vc<int>, vc<int>> deg_array_inout() { if (vc_indeg.empty()) calc_deg_inout(); return {vc_indeg, vc_outdeg}; } int deg(int v) { if (vc_deg.empty()) calc_deg(); return vc_deg[v]; } int in_deg(int v) { if (vc_indeg.empty()) calc_deg_inout(); return vc_indeg[v]; } int out_deg(int v) { if (vc_outdeg.empty()) calc_deg_inout(); return vc_outdeg[v]; } #ifdef FASTIO void debug() { print("Graph"); if (!prepared) { print("frm to cost id"); for (auto&& e: edges) print(e.frm, e.to, e.cost, e.id); } else { print("indptr", indptr); print("frm to cost id"); FOR(v, N) for (auto&& e: (*this)[v]) print(e.frm, e.to, e.cost, e.id); } } #endif vc<int> new_idx; vc<bool> used_e; // G における頂点 V[i] が、新しいグラフで i になるようにする // {G, es} // sum(deg(v)) の計算量になっていて、 // 新しいグラフの n+m より大きい可能性があるので注意 Graph<T, directed> rearrange(vc<int> V, bool keep_eid = 0) { if (len(new_idx) != N) new_idx.assign(N, -1); int n = len(V); FOR(i, n) new_idx[V[i]] = i; Graph<T, directed> G(n); vc<int> history; FOR(i, n) { for (auto&& e: (*this)[V[i]]) { if (len(used_e) <= e.id) used_e.resize(e.id + 1); if (used_e[e.id]) continue; int a = e.frm, b = e.to; if (new_idx[a] != -1 && new_idx[b] != -1) { history.eb(e.id); used_e[e.id] = 1; int eid = (keep_eid ? e.id : -1); G.add(new_idx[a], new_idx[b], e.cost, eid); } } } FOR(i, n) new_idx[V[i]] = -1; for (auto&& eid: history) used_e[eid] = 0; G.build(); return G; } Graph<T, true> to_directed_tree(int root = -1) { if (root == -1) root = 0; assert(!is_directed && prepared && M == N - 1); Graph<T, true> G1(N); vc<int> par(N, -1); auto dfs = [&](auto& dfs, int v) -> void { for (auto& e: (*this)[v]) { if (e.to == par[v]) continue; par[e.to] = v, dfs(dfs, e.to); } }; dfs(dfs, root); for (auto& e: edges) { int a = e.frm, b = e.to; if (par[a] == b) swap(a, b); assert(par[b] == a); G1.add(a, b, e.cost); } G1.build(); return G1; } private: void calc_deg() { assert(vc_deg.empty()); vc_deg.resize(N); for (auto&& e: edges) vc_deg[e.frm]++, vc_deg[e.to]++; } void calc_deg_inout() { assert(vc_indeg.empty()); vc_indeg.resize(N); vc_outdeg.resize(N); for (auto&& e: edges) { vc_indeg[e.to]++, vc_outdeg[e.frm]++; } } }; #line 5 "string/suffix_tree.hpp" // https://twitter.com/maspy_stars/status/1565901414236205057?s=20&t=S2Tu6ayozHcakxai8dmh4g // 各ノードは、suffix array での長方形領域と見なして、 // グラフおよび、領域データを作る。 // sample: test/my_test/suffix_tree.test.cpp template <typename SUFFIX> pair<Graph<int, 1>, vc<tuple<int, int, int, int>>> suffix_tree(SUFFIX& X) { auto SA = X.SA; auto ISA = X.ISA; auto LCP = X.LCP; vc<tuple<int, int, int, int>> dat; vc<pair<int, int>> edges; int N = len(SA); if (N == 1) { Graph<int, 1> G(2); G.add(0, 1); G.build(); dat.eb(0, 1, 1, 1), dat.eb(0, 1, 1, 2); return {G, dat}; } dat.eb(0, N, 0, 0); CartesianTree<int, true> CT(LCP); auto dfs = [&](auto& dfs, int p, int idx, int h) -> void { int L = CT.range[idx].fi; int R = CT.range[idx].se + 1; int hh = LCP[idx]; if (h < hh) { edges.eb(p, len(dat)); p = len(dat); dat.eb(L, R, h, hh); } if (CT.lch[idx] == -1) { if (hh < N - SA[idx]) { edges.eb(p, len(dat)); dat.eb(idx, idx + 1, hh, N - SA[idx]); } } else { dfs(dfs, p, CT.lch[idx], hh); } if (CT.rch[idx] == -1) { if (hh < N - SA[idx + 1]) { edges.eb(p, len(dat)); dat.eb(idx + 1, idx + 2, hh, N - SA[idx + 1]); } } else { dfs(dfs, p, CT.rch[idx], hh); } }; int r = CT.root; if (LCP[r] > 0) { edges.eb(0, 1); dat.eb(0, N, 0, LCP[r]); dfs(dfs, 1, r, LCP[r]); } else { dfs(dfs, 0, r, 0); } for (auto& [a, b, c, d]: dat) ++c, ++d; Graph<int, 1> G(len(dat)); for (auto&& [a, b]: edges) G.add(a, b); G.build(); return {G, dat}; }