This documentation is automatically generated by online-judge-tools/verification-helper
#include "ds/sparse_table/sparse_table.hpp"
#pragma once
// 冪等なモノイドであることを仮定。disjoint sparse table より x 倍高速
template <class Monoid>
struct Sparse_Table {
using MX = Monoid;
using X = typename MX::value_type;
int n, log;
vvc<X> dat;
Sparse_Table() {}
Sparse_Table(int n) { build(n); }
template <typename F>
Sparse_Table(int n, F f) {
build(n, f);
}
Sparse_Table(const vc<X>& v) { build(v); }
void build(int m) {
build(m, [](int i) -> X { return MX::unit(); });
}
void build(const vc<X>& v) {
build(len(v), [&](int i) -> X { return v[i]; });
}
template <typename F>
void build(int m, F f) {
n = m, log = 1;
while ((1 << log) < n) ++log;
dat.resize(log);
dat[0].resize(n);
FOR(i, n) dat[0][i] = f(i);
FOR(i, log - 1) {
dat[i + 1].resize(len(dat[i]) - (1 << i));
FOR(j, len(dat[i]) - (1 << i)) {
dat[i + 1][j] = MX::op(dat[i][j], dat[i][j + (1 << i)]);
}
}
}
X prod(int L, int R) {
if (L == R) return MX::unit();
if (R == L + 1) return dat[0][L];
int k = topbit(R - L - 1);
return MX::op(dat[k][L], dat[k][R - (1 << k)]);
}
template <class F>
int max_right(const F check, int L) {
assert(0 <= L && L <= n && check(MX::unit()));
if (L == n) return n;
int ok = L, ng = n + 1;
while (ok + 1 < ng) {
int k = (ok + ng) / 2;
bool bl = check(prod(L, k));
if (bl) ok = k;
if (!bl) ng = k;
}
return ok;
}
template <class F>
int min_left(const F check, int R) {
assert(0 <= R && R <= n && check(MX::unit()));
if (R == 0) return 0;
int ok = R, ng = -1;
while (ng + 1 < ok) {
int k = (ok + ng) / 2;
bool bl = check(prod(k, R));
if (bl) ok = k;
if (!bl) ng = k;
}
return ok;
}
};
#line 2 "ds/sparse_table/sparse_table.hpp"
// 冪等なモノイドであることを仮定。disjoint sparse table より x 倍高速
template <class Monoid>
struct Sparse_Table {
using MX = Monoid;
using X = typename MX::value_type;
int n, log;
vvc<X> dat;
Sparse_Table() {}
Sparse_Table(int n) { build(n); }
template <typename F>
Sparse_Table(int n, F f) {
build(n, f);
}
Sparse_Table(const vc<X>& v) { build(v); }
void build(int m) {
build(m, [](int i) -> X { return MX::unit(); });
}
void build(const vc<X>& v) {
build(len(v), [&](int i) -> X { return v[i]; });
}
template <typename F>
void build(int m, F f) {
n = m, log = 1;
while ((1 << log) < n) ++log;
dat.resize(log);
dat[0].resize(n);
FOR(i, n) dat[0][i] = f(i);
FOR(i, log - 1) {
dat[i + 1].resize(len(dat[i]) - (1 << i));
FOR(j, len(dat[i]) - (1 << i)) {
dat[i + 1][j] = MX::op(dat[i][j], dat[i][j + (1 << i)]);
}
}
}
X prod(int L, int R) {
if (L == R) return MX::unit();
if (R == L + 1) return dat[0][L];
int k = topbit(R - L - 1);
return MX::op(dat[k][L], dat[k][R - (1 << k)]);
}
template <class F>
int max_right(const F check, int L) {
assert(0 <= L && L <= n && check(MX::unit()));
if (L == n) return n;
int ok = L, ng = n + 1;
while (ok + 1 < ng) {
int k = (ok + ng) / 2;
bool bl = check(prod(L, k));
if (bl) ok = k;
if (!bl) ng = k;
}
return ok;
}
template <class F>
int min_left(const F check, int R) {
assert(0 <= R && R <= n && check(MX::unit()));
if (R == 0) return 0;
int ok = R, ng = -1;
while (ng + 1 < ok) {
int k = (ok + ng) / 2;
bool bl = check(prod(k, R));
if (bl) ok = k;
if (!bl) ng = k;
}
return ok;
}
};