This documentation is automatically generated by online-judge-tools/verification-helper
#include "string/substring_count_in_substring.hpp"
#include "ds/fenwicktree/fenwicktree.hpp"
#include "string/basic_substring_structure.hpp"
// pattern S[i,j) を重み w で追加. S[i,j) に含まれる pattern の総和を求める.
// offline で実装している (online 化は易しい)
template <typename WT, bool ONLINE>
struct Substring_Count_in_Substring {
Basic_Substring_Structure BASS;
vc<tuple<int, int, WT>> pattern;
// 各行に対して block を含めず右にあるものの個数
// 各行に対して block を含めて右にあるものの個数
vc<WT> R0, R1;
vc<WT> R0c;
// 各列の上端に対して, 右下にあるものの個数
vc<WT> RD;
Substring_Count_in_Substring(Basic_Substring_Structure& BASS, vc<tuple<int, int, WT>> pattern) : BASS(BASS), pattern(pattern) { build(); }
void build() {
for (auto& [i, j, w]: pattern) {
auto [a, b] = BASS.get_position(i, j);
i = a, j = b;
}
int n = BASS.n_block();
auto [H, W] = BASS.shape();
R0.resize(H), R1.resize(H);
for (auto& [a, b, w]: pattern) { R1[a] += w; }
FOR(i, H) {
int k = BASS.right[i];
if (k != -1) R0[i] = R1[k];
R1[i] += R0[i];
}
R0c = cumsum<WT>(R0);
RD.resize(W);
for (auto& [a, b, w]: pattern) RD[b] += w;
FOR(k, n) {
FOR_R(y, BASS.Y[k], BASS.Y[k + 1] - 1) { RD[y] += RD[y + 1]; }
}
FOR(y, W) {
int k = BASS.Y_to_block[y];
int a = BASS.X[k];
int b = a + BASS.height[y];
RD[y] += R0c[b] - R0c[a];
if (BASS.down[y] != -1) RD[y] += RD[BASS.down[y]];
}
if (ONLINE) {
// block 内の矩形クエリ用のデータ構造を構築
}
}
vc<WT> sum_query(vc<pair<int, int>> query) {
static_assert(!ONLINE);
int Q = len(query);
for (auto& [i, j]: query) {
auto [a, b] = BASS.get_position(i, j);
i = a, j = b;
}
vc<WT> ANS(Q);
auto [H, W] = BASS.shape();
vvc<int> PID(H), QID(H);
FOR(i, len(pattern)) { PID[get<0>(pattern[i])].eb(i); }
FOR(i, Q) { QID[query[i].fi].eb(i); }
FenwickTree<Monoid_Add<WT>> bit(W);
FOR_R(i, H) {
for (int p: PID[i]) {
auto [a, b, w] = pattern[p];
bit.add(b, w);
}
int r = BASS.Y[BASS.X_to_block[i]] + BASS.width[i];
for (int q: QID[i]) {
auto [a, b] = query[q];
ANS[q] += bit.sum(b, r);
int k = BASS.X_to_block[a];
int d = BASS.X[k] + BASS.height[b];
ANS[q] += R0c[d] - R0c[a];
int c = BASS.down[b];
if (c != -1) ANS[q] += RD[c];
}
}
return ANS;
}
WT sum_query(int i, int j) { assert(0); }
};
#line 1 "string/substring_count_in_substring.hpp"
#line 2 "alg/monoid/add.hpp"
template <typename E>
struct Monoid_Add {
using X = E;
using value_type = X;
static constexpr X op(const X &x, const X &y) noexcept { return x + y; }
static constexpr X inverse(const X &x) noexcept { return -x; }
static constexpr X power(const X &x, ll n) noexcept { return X(n) * x; }
static constexpr X unit() { return X(0); }
static constexpr bool commute = true;
};
#line 3 "ds/fenwicktree/fenwicktree.hpp"
template <typename Monoid>
struct FenwickTree {
using G = Monoid;
using MX = Monoid;
using E = typename G::value_type;
int n;
vector<E> dat;
E total;
FenwickTree() {}
FenwickTree(int n) { build(n); }
template <typename F>
FenwickTree(int n, F f) {
build(n, f);
}
FenwickTree(const vc<E>& v) { build(v); }
void build(int m) {
n = m;
dat.assign(m, G::unit());
total = G::unit();
}
void build(const vc<E>& v) {
build(len(v), [&](int i) -> E { return v[i]; });
}
template <typename F>
void build(int m, F f) {
n = m;
dat.clear();
dat.reserve(n);
total = G::unit();
FOR(i, n) { dat.eb(f(i)); }
for (int i = 1; i <= n; ++i) {
int j = i + (i & -i);
if (j <= n) dat[j - 1] = G::op(dat[i - 1], dat[j - 1]);
}
total = prefix_sum(m);
}
E prod_all() { return total; }
E sum_all() { return total; }
E sum(int k) { return prefix_sum(k); }
E prod(int k) { return prefix_prod(k); }
E prefix_sum(int k) { return prefix_prod(k); }
E prefix_prod(int k) {
chmin(k, n);
E ret = G::unit();
for (; k > 0; k -= k & -k) ret = G::op(ret, dat[k - 1]);
return ret;
}
E sum(int L, int R) { return prod(L, R); }
E prod(int L, int R) {
chmax(L, 0), chmin(R, n);
if (L == 0) return prefix_prod(R);
assert(0 <= L && L <= R && R <= n);
E pos = G::unit(), neg = G::unit();
while (L < R) { pos = G::op(pos, dat[R - 1]), R -= R & -R; }
while (R < L) { neg = G::op(neg, dat[L - 1]), L -= L & -L; }
return G::op(pos, G::inverse(neg));
}
vc<E> get_all() {
vc<E> res(n);
FOR(i, n) res[i] = prod(i, i + 1);
return res;
}
void add(int k, E x) { multiply(k, x); }
void multiply(int k, E x) {
static_assert(G::commute);
total = G::op(total, x);
for (++k; k <= n; k += k & -k) dat[k - 1] = G::op(dat[k - 1], x);
}
void set(int k, E x) { add(k, G::op(G::inverse(prod(k, k + 1)), x)); }
template <class F>
int max_right(const F check, int L = 0) {
assert(check(G::unit()));
E s = G::unit();
int i = L;
// 2^k 進むとダメ
int k = [&]() {
while (1) {
if (i % 2 == 1) { s = G::op(s, G::inverse(dat[i - 1])), i -= 1; }
if (i == 0) { return topbit(n) + 1; }
int k = lowbit(i) - 1;
if (i + (1 << k) > n) return k;
E t = G::op(s, dat[i + (1 << k) - 1]);
if (!check(t)) { return k; }
s = G::op(s, G::inverse(dat[i - 1])), i -= i & -i;
}
}();
while (k) {
--k;
if (i + (1 << k) - 1 < len(dat)) {
E t = G::op(s, dat[i + (1 << k) - 1]);
if (check(t)) { i += (1 << k), s = t; }
}
}
return i;
}
// check(i, x)
template <class F>
int max_right_with_index(const F check, int L = 0) {
assert(check(L, G::unit()));
E s = G::unit();
int i = L;
// 2^k 進むとダメ
int k = [&]() {
while (1) {
if (i % 2 == 1) { s = G::op(s, G::inverse(dat[i - 1])), i -= 1; }
if (i == 0) { return topbit(n) + 1; }
int k = lowbit(i) - 1;
if (i + (1 << k) > n) return k;
E t = G::op(s, dat[i + (1 << k) - 1]);
if (!check(i + (1 << k), t)) { return k; }
s = G::op(s, G::inverse(dat[i - 1])), i -= i & -i;
}
}();
while (k) {
--k;
if (i + (1 << k) - 1 < len(dat)) {
E t = G::op(s, dat[i + (1 << k) - 1]);
if (check(i + (1 << k), t)) { i += (1 << k), s = t; }
}
}
return i;
}
template <class F>
int min_left(const F check, int R) {
assert(check(G::unit()));
E s = G::unit();
int i = R;
// false になるところまで戻る
int k = 0;
while (i > 0 && check(s)) {
s = G::op(s, dat[i - 1]);
k = lowbit(i);
i -= i & -i;
}
if (check(s)) {
assert(i == 0);
return 0;
}
// 2^k 進むと ok になる
// false を維持して進む
while (k) {
--k;
E t = G::op(s, G::inverse(dat[i + (1 << k) - 1]));
if (!check(t)) { i += (1 << k), s = t; }
}
return i + 1;
}
int kth(E k, int L = 0) {
return max_right([&k](E x) -> bool { return x <= k; }, L);
}
};
#line 2 "string/basic_substring_structure.hpp"
#line 2 "ds/hashmap.hpp"
// u64 -> Val
template <typename Val>
struct HashMap {
// n は入れたいものの個数で ok
HashMap(u32 n = 0) { build(n); }
void build(u32 n) {
u32 k = 8;
while (k < n * 2) k *= 2;
cap = k / 2, mask = k - 1;
key.resize(k), val.resize(k), used.assign(k, 0);
}
// size を保ったまま. size=0 にするときは build すること.
void clear() {
used.assign(len(used), 0);
cap = (mask + 1) / 2;
}
int size() { return len(used) / 2 - cap; }
int index(const u64& k) {
int i = 0;
for (i = hash(k); used[i] && key[i] != k; i = (i + 1) & mask) {}
return i;
}
Val& operator[](const u64& k) {
if (cap == 0) extend();
int i = index(k);
if (!used[i]) { used[i] = 1, key[i] = k, val[i] = Val{}, --cap; }
return val[i];
}
Val get(const u64& k, Val default_value) {
int i = index(k);
return (used[i] ? val[i] : default_value);
}
bool count(const u64& k) {
int i = index(k);
return used[i] && key[i] == k;
}
// f(key, val)
template <typename F>
void enumerate_all(F f) {
FOR(i, len(used)) if (used[i]) f(key[i], val[i]);
}
private:
u32 cap, mask;
vc<u64> key;
vc<Val> val;
vc<bool> used;
u64 hash(u64 x) {
static const u64 FIXED_RANDOM = std::chrono::steady_clock::now().time_since_epoch().count();
x += FIXED_RANDOM;
x = (x ^ (x >> 30)) * 0xbf58476d1ce4e5b9;
x = (x ^ (x >> 27)) * 0x94d049bb133111eb;
return (x ^ (x >> 31)) & mask;
}
void extend() {
vc<pair<u64, Val>> dat;
dat.reserve(len(used) / 2 - cap);
FOR(i, len(used)) {
if (used[i]) dat.eb(key[i], val[i]);
}
build(2 * len(dat));
for (auto& [a, b]: dat) (*this)[a] = b;
}
};
#line 2 "string/suffix_array.hpp"
#line 2 "alg/monoid/min.hpp"
template <typename E>
struct Monoid_Min {
using X = E;
using value_type = X;
static constexpr X op(const X &x, const X &y) noexcept { return min(x, y); }
static constexpr X unit() { return infty<E>; }
static constexpr bool commute = true;
};
#line 2 "ds/sparse_table/sparse_table.hpp"
// 冪等なモノイドであることを仮定。disjoint sparse table より x 倍高速
template <class Monoid>
struct Sparse_Table {
using MX = Monoid;
using X = typename MX::value_type;
int n, log;
vvc<X> dat;
Sparse_Table() {}
Sparse_Table(int n) { build(n); }
template <typename F>
Sparse_Table(int n, F f) {
build(n, f);
}
Sparse_Table(const vc<X>& v) { build(v); }
void build(int m) {
build(m, [](int i) -> X { return MX::unit(); });
}
void build(const vc<X>& v) {
build(len(v), [&](int i) -> X { return v[i]; });
}
template <typename F>
void build(int m, F f) {
n = m, log = 1;
while ((1 << log) < n) ++log;
dat.resize(log);
dat[0].resize(n);
FOR(i, n) dat[0][i] = f(i);
FOR(i, log - 1) {
dat[i + 1].resize(len(dat[i]) - (1 << i));
FOR(j, len(dat[i]) - (1 << i)) {
dat[i + 1][j] = MX::op(dat[i][j], dat[i][j + (1 << i)]);
}
}
}
X prod(int L, int R) {
if (L == R) return MX::unit();
if (R == L + 1) return dat[0][L];
int k = topbit(R - L - 1);
return MX::op(dat[k][L], dat[k][R - (1 << k)]);
}
template <class F>
int max_right(const F check, int L) {
assert(0 <= L && L <= n && check(MX::unit()));
if (L == n) return n;
int ok = L, ng = n + 1;
while (ok + 1 < ng) {
int k = (ok + ng) / 2;
bool bl = check(prod(L, k));
if (bl) ok = k;
if (!bl) ng = k;
}
return ok;
}
template <class F>
int min_left(const F check, int R) {
assert(0 <= R && R <= n && check(MX::unit()));
if (R == 0) return 0;
int ok = R, ng = -1;
while (ng + 1 < ok) {
int k = (ok + ng) / 2;
bool bl = check(prod(k, R));
if (bl) ok = k;
if (!bl) ng = k;
}
return ok;
}
};
#line 2 "ds/segtree/segtree.hpp"
template <class Monoid>
struct SegTree {
using MX = Monoid;
using X = typename MX::value_type;
using value_type = X;
vc<X> dat;
int n, log, size;
SegTree() {}
SegTree(int n) { build(n); }
template <typename F>
SegTree(int n, F f) {
build(n, f);
}
SegTree(const vc<X>& v) { build(v); }
void build(int m) {
build(m, [](int i) -> X { return MX::unit(); });
}
void build(const vc<X>& v) {
build(len(v), [&](int i) -> X { return v[i]; });
}
template <typename F>
void build(int m, F f) {
n = m, log = 1;
while ((1 << log) < n) ++log;
size = 1 << log;
dat.assign(size << 1, MX::unit());
FOR(i, n) dat[size + i] = f(i);
FOR_R(i, 1, size) update(i);
}
X get(int i) { return dat[size + i]; }
vc<X> get_all() { return {dat.begin() + size, dat.begin() + size + n}; }
void update(int i) { dat[i] = Monoid::op(dat[2 * i], dat[2 * i + 1]); }
void set(int i, const X& x) {
assert(i < n);
dat[i += size] = x;
while (i >>= 1) update(i);
}
void multiply(int i, const X& x) {
assert(i < n);
i += size;
dat[i] = Monoid::op(dat[i], x);
while (i >>= 1) update(i);
}
X prod(int L, int R) {
assert(0 <= L && L <= R && R <= n);
X vl = Monoid::unit(), vr = Monoid::unit();
L += size, R += size;
while (L < R) {
if (L & 1) vl = Monoid::op(vl, dat[L++]);
if (R & 1) vr = Monoid::op(dat[--R], vr);
L >>= 1, R >>= 1;
}
return Monoid::op(vl, vr);
}
X prod_all() { return dat[1]; }
template <class F>
int max_right(F check, int L) {
assert(0 <= L && L <= n && check(Monoid::unit()));
if (L == n) return n;
L += size;
X sm = Monoid::unit();
do {
while (L % 2 == 0) L >>= 1;
if (!check(Monoid::op(sm, dat[L]))) {
while (L < size) {
L = 2 * L;
if (check(Monoid::op(sm, dat[L]))) { sm = Monoid::op(sm, dat[L++]); }
}
return L - size;
}
sm = Monoid::op(sm, dat[L++]);
} while ((L & -L) != L);
return n;
}
template <class F>
int min_left(F check, int R) {
assert(0 <= R && R <= n && check(Monoid::unit()));
if (R == 0) return 0;
R += size;
X sm = Monoid::unit();
do {
--R;
while (R > 1 && (R % 2)) R >>= 1;
if (!check(Monoid::op(dat[R], sm))) {
while (R < size) {
R = 2 * R + 1;
if (check(Monoid::op(dat[R], sm))) { sm = Monoid::op(dat[R--], sm); }
}
return R + 1 - size;
}
sm = Monoid::op(dat[R], sm);
} while ((R & -R) != R);
return 0;
}
// prod_{l<=i<r} A[i xor x]
X xor_prod(int l, int r, int xor_val) {
static_assert(Monoid::commute);
X x = Monoid::unit();
for (int k = 0; k < log + 1; ++k) {
if (l >= r) break;
if (l & 1) { x = Monoid::op(x, dat[(size >> k) + ((l++) ^ xor_val)]); }
if (r & 1) { x = Monoid::op(x, dat[(size >> k) + ((--r) ^ xor_val)]); }
l /= 2, r /= 2, xor_val /= 2;
}
return x;
}
};
#line 6 "string/suffix_array.hpp"
// 辞書順 i 番目の suffix が j 文字目始まりであるとき、
// SA[i] = j, ISA[j] = i
// |S|>0 を前提(そうでない場合 dummy 文字を追加して利用せよ)
template <bool USE_SPARSE_TABLE = true>
struct Suffix_Array {
vc<int> SA;
vc<int> ISA;
vc<int> LCP;
using Mono = Monoid_Min<int>;
using SegType = conditional_t<USE_SPARSE_TABLE, Sparse_Table<Mono>, SegTree<Mono> >;
SegType seg;
bool build_seg;
Suffix_Array() {}
Suffix_Array(string& s) {
build_seg = 0;
assert(len(s) > 0);
char first = 127, last = 0;
for (auto&& c: s) {
chmin(first, c);
chmax(last, c);
}
SA = calc_suffix_array(s, first, last);
calc_LCP(s);
}
Suffix_Array(vc<int> s) {
build_seg = 0;
assert(len(s) > 0);
SA = calc_suffix_array(s);
calc_LCP(s);
}
// lcp(S[i:], S[j:])
int lcp(int i, int j) {
if (!build_seg) {
build_seg = true;
seg.build(LCP);
}
int n = len(SA);
if (i == n || j == n) return 0;
if (i == j) return n - i;
i = ISA[i], j = ISA[j];
if (i > j) swap(i, j);
return seg.prod(i, j);
}
// S[i:] との lcp が n 以上であるような半開区間
pair<int, int> lcp_range(int i, int n) {
if (!build_seg) {
build_seg = true;
seg.build(LCP);
}
i = ISA[i];
int a = seg.min_left([&](auto e) -> bool { return e >= n; }, i);
int b = seg.max_right([&](auto e) -> bool { return e >= n; }, i);
return {a, b + 1};
}
// -1: S[L1:R1) < S[L2, R2)
// 0: S[L1:R1) = S[L2, R2)
// +1: S[L1:R1) > S[L2, R2)
int compare(int L1, int R1, int L2, int R2) {
int n1 = R1 - L1, n2 = R2 - L2;
int n = lcp(L1, L2);
if (n == n1 && n == n2) return 0;
if (n == n1) return -1;
if (n == n2) return 1;
return (ISA[L1 + n] > ISA[L2 + n] ? 1 : -1);
}
private:
void induced_sort(const vc<int>& vect, int val_range, vc<int>& SA, const vc<bool>& sl, const vc<int>& lms_idx) {
vc<int> l(val_range, 0), r(val_range, 0);
for (int c: vect) {
if (c + 1 < val_range) ++l[c + 1];
++r[c];
}
partial_sum(l.begin(), l.end(), l.begin());
partial_sum(r.begin(), r.end(), r.begin());
fill(SA.begin(), SA.end(), -1);
for (int i = (int)lms_idx.size() - 1; i >= 0; --i) SA[--r[vect[lms_idx[i]]]] = lms_idx[i];
for (int i: SA)
if (i >= 1 && sl[i - 1]) SA[l[vect[i - 1]]++] = i - 1;
fill(r.begin(), r.end(), 0);
for (int c: vect) ++r[c];
partial_sum(r.begin(), r.end(), r.begin());
for (int k = (int)SA.size() - 1, i = SA[k]; k >= 1; --k, i = SA[k])
if (i >= 1 && !sl[i - 1]) { SA[--r[vect[i - 1]]] = i - 1; }
}
vc<int> SA_IS(const vc<int>& vect, int val_range) {
const int n = vect.size();
vc<int> SA(n), lms_idx;
vc<bool> sl(n);
sl[n - 1] = false;
for (int i = n - 2; i >= 0; --i) {
sl[i] = (vect[i] > vect[i + 1] || (vect[i] == vect[i + 1] && sl[i + 1]));
if (sl[i] && !sl[i + 1]) lms_idx.push_back(i + 1);
}
reverse(lms_idx.begin(), lms_idx.end());
induced_sort(vect, val_range, SA, sl, lms_idx);
vc<int> new_lms_idx(lms_idx.size()), lms_vec(lms_idx.size());
for (int i = 0, k = 0; i < n; ++i)
if (!sl[SA[i]] && SA[i] >= 1 && sl[SA[i] - 1]) { new_lms_idx[k++] = SA[i]; }
int cur = 0;
SA[n - 1] = cur;
for (size_t k = 1; k < new_lms_idx.size(); ++k) {
int i = new_lms_idx[k - 1], j = new_lms_idx[k];
if (vect[i] != vect[j]) {
SA[j] = ++cur;
continue;
}
bool flag = false;
for (int a = i + 1, b = j + 1;; ++a, ++b) {
if (vect[a] != vect[b]) {
flag = true;
break;
}
if ((!sl[a] && sl[a - 1]) || (!sl[b] && sl[b - 1])) {
flag = !((!sl[a] && sl[a - 1]) && (!sl[b] && sl[b - 1]));
break;
}
}
SA[j] = (flag ? ++cur : cur);
}
for (size_t i = 0; i < lms_idx.size(); ++i) lms_vec[i] = SA[lms_idx[i]];
if (cur + 1 < (int)lms_idx.size()) {
auto lms_SA = SA_IS(lms_vec, cur + 1);
for (size_t i = 0; i < lms_idx.size(); ++i) { new_lms_idx[i] = lms_idx[lms_SA[i]]; }
}
induced_sort(vect, val_range, SA, sl, new_lms_idx);
return SA;
}
vc<int> calc_suffix_array(const string& s, const char first = 'a', const char last = 'z') {
vc<int> vect(s.size() + 1);
copy(begin(s), end(s), begin(vect));
for (auto& x: vect) x -= (int)first - 1;
vect.back() = 0;
auto ret = SA_IS(vect, (int)last - (int)first + 2);
ret.erase(ret.begin());
return ret;
}
vc<int> calc_suffix_array(const vc<int>& s) {
vc<int> ss = s;
UNIQUE(ss);
vc<int> vect(s.size() + 1);
copy(all(s), vect.begin());
for (auto& x: vect) x = LB(ss, x) + 1;
vect.back() = 0;
auto ret = SA_IS(vect, MAX(vect) + 2);
ret.erase(ret.begin());
return ret;
}
template <typename STRING>
void calc_LCP(const STRING& s) {
int n = s.size(), k = 0;
ISA.resize(n);
LCP.resize(n);
for (int i = 0; i < n; i++) ISA[SA[i]] = i;
for (int i = 0; i < n; i++, k ? k-- : 0) {
if (ISA[i] == n - 1) {
k = 0;
continue;
}
int j = SA[ISA[i] + 1];
while (i + k < n && j + k < n && s[i + k] == s[j + k]) k++;
LCP[ISA[i]] = k;
}
LCP.resize(n - 1);
}
};
#line 2 "random/base.hpp"
u64 RNG_64() {
static u64 x_ = u64(chrono::duration_cast<chrono::nanoseconds>(chrono::high_resolution_clock::now().time_since_epoch()).count()) * 10150724397891781847ULL;
x_ ^= x_ << 7;
return x_ ^= x_ >> 9;
}
u64 RNG(u64 lim) { return RNG_64() % lim; }
ll RNG(ll l, ll r) { return l + RNG_64() % (r - l); }
#line 2 "mod/modint61.hpp"
struct modint61 {
static constexpr u64 mod = (1ULL << 61) - 1;
u64 val;
constexpr modint61() : val(0ULL) {}
constexpr modint61(u32 x) : val(x) {}
constexpr modint61(u64 x) : val(x % mod) {}
constexpr modint61(int x) : val((x < 0) ? (x + static_cast<ll>(mod)) : x) {}
constexpr modint61(ll x) : val(((x %= static_cast<ll>(mod)) < 0) ? (x + static_cast<ll>(mod)) : x) {}
static constexpr u64 get_mod() { return mod; }
modint61 &operator+=(const modint61 &a) {
val = ((val += a.val) >= mod) ? (val - mod) : val;
return *this;
}
modint61 &operator-=(const modint61 &a) {
val = ((val -= a.val) >= mod) ? (val + mod) : val;
return *this;
}
modint61 &operator*=(const modint61 &a) {
const unsigned __int128 y = static_cast<unsigned __int128>(val) * a.val;
val = (y >> 61) + (y & mod);
val = (val >= mod) ? (val - mod) : val;
return *this;
}
modint61 operator-() const { return modint61(val ? mod - val : u64(0)); }
modint61 &operator/=(const modint61 &a) { return (*this *= a.inverse()); }
modint61 operator+(const modint61 &p) const { return modint61(*this) += p; }
modint61 operator-(const modint61 &p) const { return modint61(*this) -= p; }
modint61 operator*(const modint61 &p) const { return modint61(*this) *= p; }
modint61 operator/(const modint61 &p) const { return modint61(*this) /= p; }
bool operator<(const modint61 &other) const { return val < other.val; }
bool operator==(const modint61 &p) const { return val == p.val; }
bool operator!=(const modint61 &p) const { return val != p.val; }
modint61 inverse() const {
ll a = val, b = mod, u = 1, v = 0, t;
while (b > 0) {
t = a / b;
swap(a -= t * b, b), swap(u -= t * v, v);
}
return modint61(u);
}
modint61 pow(ll n) const {
assert(n >= 0);
modint61 ret(1), mul(val);
while (n > 0) {
if (n & 1) ret *= mul;
mul *= mul, n >>= 1;
}
return ret;
}
};
#ifdef FASTIO
void rd(modint61 &x) {
fastio::rd(x.val);
assert(0 <= x.val && x.val < modint61::mod);
}
void wt(modint61 x) { fastio::wt(x.val); }
#endif
#line 4 "string/rollinghash.hpp"
struct RollingHash {
using mint = modint61;
static constexpr u64 mod = mint::get_mod();
const mint base;
vc<mint> power;
static inline mint generate_base() { return RNG(mod); }
inline void expand(size_t sz) {
if (power.size() < sz + 1) {
int pre_sz = (int)power.size();
power.resize(sz + 1);
FOR(i, pre_sz - 1, sz) power[i + 1] = power[i] * base;
}
}
explicit RollingHash(mint base = generate_base()) : base(base), power{1} {}
template <typename STRING>
vector<mint> build(const STRING& s) const {
int sz = s.size();
vector<mint> hashed(sz + 1, mint(0));
for (int i = 0; i < sz; i++) { hashed[i + 1] = hashed[i] * base + s[i]; }
return hashed;
}
template <typename STRING>
mint eval(STRING& s) {
mint x = 0;
for (auto& ch: s) x = base * x + ch;
return x;
}
mint query(const vc<mint>& s, int l, int r) {
assert(0 <= l && l <= r && r < len(s));
expand(r - l);
return (s[r] - s[l] * power[r - l]);
}
mint combine(mint h1, mint h2, int h2len) {
expand(h2len);
return h1 * power[h2len] + h2;
}
mint add_char(mint h, int x) { return h * base + mint(x); }
int lcp(const vc<mint>& a, int l1, int r1, const vc<mint>& b, int l2,
int r2) {
int len = min(r1 - l1, r2 - l2);
int low = 0, high = len + 1;
while (high - low > 1) {
int mid = (low + high) / 2;
if (query(a, l1, l1 + mid) == query(b, l2, l2 + mid))
low = mid;
else
high = mid;
}
return low;
}
};
#line 2 "seq/cartesian_tree.hpp"
/*
辞書順で高さを unique して、木にしている。
極大長方形アルゴリズムで線形時間構築。
*/
template <typename T, bool IS_MIN>
struct CartesianTree {
int n;
vc<T>& A;
vc<pair<int, int>> range;
vc<int> lch, rch, par;
int root;
CartesianTree(vc<T>& A) : n(len(A)), A(A) {
range.assign(n, {-1, -1});
lch.assign(n, -1);
rch.assign(n, -1);
par.assign(n, -1);
if (n == 1) {
range[0] = {0, 1};
root = 0;
return;
}
auto is_sm = [&](int i, int j) -> bool {
if (IS_MIN) return (A[i] < A[j]) || (A[i] == A[j] && i < j);
return (A[i] > A[j]) || (A[i] == A[j] && i < j);
};
vc<int> st;
FOR(i, n) {
while (!st.empty() && is_sm(i, st.back())) {
lch[i] = st.back();
st.pop_back();
}
range[i].fi = (st.empty() ? 0 : st.back() + 1);
st.eb(i);
}
st.clear();
FOR_R(i, n) {
while (!st.empty() && is_sm(i, st.back())) {
rch[i] = st.back();
st.pop_back();
}
range[i].se = (st.empty() ? n : st.back());
st.eb(i);
}
FOR(i, n) if (lch[i] != -1) par[lch[i]] = i;
FOR(i, n) if (rch[i] != -1) par[rch[i]] = i;
FOR(i, n) if (par[i] == -1) root = i;
}
// (l, r, h)
tuple<int, int, T> maximum_rectangle(int i) {
auto [l, r] = range[i];
return {l, r, A[i]};
}
// (l, r, h)
T max_rectangle_area() {
assert(IS_MIN);
T res = 0;
FOR(i, n) {
auto [l, r, h] = maximum_rectangle(i);
chmax(res, (r - l) * h);
}
return res;
}
ll count_subrectangle(bool baseline) {
assert(IS_MIN);
ll res = 0;
FOR(i, n) {
auto [l, r, h] = maximum_rectangle(i);
ll x = (baseline ? h : h * (h + 1) / 2);
res += x * (i - l + 1) * (r - i);
}
return res;
}
};
#line 7 "string/basic_substring_structure.hpp"
// https://arxiv.org/pdf/2312.11873
struct Basic_Substring_Structure {
using SA_t = Suffix_Array<false>;
int N;
string S, T; // T = rev(S)
RollingHash RH;
vc<decltype(RH)::mint> SH;
SA_t S_SA, T_SA;
HashMap<int> hash_to_col;
/*
block を diagonal に配置した長方形を作る感じにする.
X, Y: i 番目の block が [X[i],X[i+1]) x [Y[i],Y[i+1]) になる.
X_to_block, Y_to_block: 行番号や列番号に対応する block.
width, height: 行の幅, 列の高さ. [X[i],X[i]+width[i]) など.
right: 行き先の行
down: 行き先の列
*/
// topological 逆順 (最後に S[0,N) が来る)
vc<pair<int, int>> raw_index; // 各 block の代表元に対応する [i,j]
vc<int> X, Y;
vc<int> X_to_block, Y_to_block;
vc<int> width, height;
vc<int> right, down;
int n_block() { return len(raw_index); }
pair<int, int> shape() { return {X.back(), Y.back()}; }
Basic_Substring_Structure(string& S) { build(S); }
void build(string& S_) {
S = S_, T = {S_.rbegin(), S_.rend()};
SH = RH.build(S);
S_SA = SA_t(S), T_SA = SA_t(T);
S_SA.seg.build(S_SA.LCP), S_SA.build_seg = true;
T_SA.seg.build(T_SA.LCP), T_SA.build_seg = true;
N = len(S);
if (N == 1) {
raw_index = {{0, 0}}, X = {0, 1}, Y = {0, 1}, X_to_block = {0}, Y_to_block = {0};
width = {1}, height = {1}, right = {-1}, down = {-1};
return;
}
X_to_block.reserve(2 * N - 1), Y_to_block.reserve(2 * N - 1);
width.reserve(2 * N - 1), height.reserve(2 * N - 1);
right.reserve(2 * N - 1), down.reserve(2 * N - 1);
X = {0}, Y = {0};
CartesianTree<int, true> CS(S_SA.LCP);
CartesianTree<int, true> CT(T_SA.LCP);
hash_to_col.build(N - 1);
HashMap<int> hash_to_row(N - 1);
auto is_node = [&](CartesianTree<int, true>& CT, int i) -> bool { return (CT.A[i] > 0 && (CT.par[i] == -1 || CT.A[CT.par[i]] != CT.A[i])); };
// 列の先頭に相当するハッシュを集めておく
HashMap<int> tmp(N - 1);
FOR(i, N - 1) {
if (!is_node(CS, i)) continue;
int s = S_SA.SA[i], n = S_SA.LCP[i];
tmp[RH.query(SH, s, s + n).val] = i;
}
// occur が小さい行から作っていく
vc<int> ptr(N);
FOR(i, N - 1) {
if (is_node(CT, i)) ptr[CT.range[i].se - CT.range[i].fi]++;
}
ptr = cumsum<int>(ptr);
vc<int> I(ptr.back(), -1);
FOR(i, N - 1) {
if (!is_node(CT, i)) continue;
int occ = CT.range[i].se - CT.range[i].fi;
I[ptr[occ]++] = i;
}
auto new_block = [&](int h, int w, int i, int j) -> int {
int bid = len(raw_index);
raw_index.eb(i, j);
X.eb(X.back() + h), Y.eb(Y.back() + w);
FOR(h) X_to_block.eb(bid), width.eb(-1), right.eb(-1);
FOR(w) Y_to_block.eb(bid), height.eb(-1), down.eb(-1);
return bid;
};
auto get_w = [&](int i) -> int { return CT.A[i] - (CT.par[i] == -1 ? 0 : CT.A[CT.par[i]]); };
auto get_h = [&](int i) -> int { return CS.A[i] - (CS.par[i] == -1 ? 0 : CS.A[CS.par[i]]); };
reverse(all(I));
for (int a0: I) {
int j = N - T_SA.SA[a0], n = T_SA.LCP[a0];
u64 key = RH.query(SH, j - n, j).val;
int b0 = tmp.get(key, -1);
if (b0 == -1) continue;
// occur>=2 に対応する block 発見
int h = get_h(b0), w = get_w(a0);
int bid = new_block(h, w, j - n, j);
FOR(x, X[bid], X[bid + 1]) { hash_to_row[RH.query(SH, j - n, j - (x - X[bid])).val] = x; }
FOR(y, Y[bid], Y[bid + 1]) { hash_to_col[RH.query(SH, j - n + (y - Y[bid]), j).val] = y; }
}
FOR(i, N - 1) {
if (!is_node(CT, i)) continue;
int r = N - T_SA.SA[i], n = T_SA.LCP[i];
u64 key = RH.query(SH, r - n, r).val;
int x = hash_to_row[key];
width[x] = get_w(i);
right[x] = hash_to_row.get(RH.query(SH, r - n + width[x], r).val, -1);
}
FOR(i, N - 1) {
if (!is_node(CS, i)) continue;
int l = S_SA.SA[i], n = S_SA.LCP[i];
u64 key = RH.query(SH, l, l + n).val;
int y = hash_to_col[key];
height[y] = get_h(i);
down[y] = hash_to_col.get(RH.query(SH, l, l + n - height[y]).val, -1);
}
// occur==1
auto get_w2 = [&](int i) -> int { // [0,i)
int k = T_SA.ISA[N - i];
int n = i, m = 0;
if (k > 0) chmax(m, T_SA.LCP[k - 1]);
if (k < N - 1) chmax(m, T_SA.LCP[k]);
return n - m;
};
auto get_h2 = [&](int i) -> int { // [i,N)
int k = S_SA.ISA[i];
int n = N - i, m = 0;
if (k > 0) chmax(m, S_SA.LCP[k - 1]);
if (k < N - 1) chmax(m, S_SA.LCP[k]);
return n - m;
};
int h = get_h2(0), w = get_w2(N);
int bid = new_block(h, w, 0, N);
FOR(x, X[bid], X[bid + 1]) {
int r = N - (x - X[bid]);
width[x] = get_w2(r);
right[x] = hash_to_row.get(RH.query(SH, width[x], r).val, -1);
}
FOR(y, Y[bid], Y[bid + 1]) {
int l = y - Y[bid];
height[y] = get_h2(l);
down[y] = hash_to_col.get(RH.query(SH, l, N - height[y]).val, -1);
}
}
// S[i,j) に対応する (x,y).
pair<int, int> get_position(int i, int j) {
// occur を保って長くする
auto& seg = S_SA.seg;
int n = j - i, k = S_SA.ISA[i];
int m = N - i;
auto check = [&](int e) -> bool {
if (e >= n) chmin(m, e);
return e >= n;
};
seg.min_left(check, k), seg.max_right(check, k);
int y = hash_to_col.get(RH.query(SH, i, i + m).val, -1);
if (y == -1) {
assert(i + m == N);
int x = X[n_block() - 1] + (N - j), y = Y[n_block() - 1] + i;
return {x, y};
}
int bid = Y_to_block[y];
auto [l, r] = raw_index[bid];
int x = (X[bid] + Y[bid]) + ((r - l) - (j - i)) - y;
return {x, y};
}
void debug() {
auto [H, W] = shape();
FOR(x, H) {
string tmp(W, '.');
int k = X_to_block[x];
FOR(y, Y[k], Y[k] + width[x]) tmp[y] = '#';
print(tmp);
}
SHOW(S);
SHOW(raw_index);
SHOW(width);
SHOW(height);
SHOW(right);
SHOW(down);
print();
}
};
#line 4 "string/substring_count_in_substring.hpp"
// pattern S[i,j) を重み w で追加. S[i,j) に含まれる pattern の総和を求める.
// offline で実装している (online 化は易しい)
template <typename WT, bool ONLINE>
struct Substring_Count_in_Substring {
Basic_Substring_Structure BASS;
vc<tuple<int, int, WT>> pattern;
// 各行に対して block を含めず右にあるものの個数
// 各行に対して block を含めて右にあるものの個数
vc<WT> R0, R1;
vc<WT> R0c;
// 各列の上端に対して, 右下にあるものの個数
vc<WT> RD;
Substring_Count_in_Substring(Basic_Substring_Structure& BASS, vc<tuple<int, int, WT>> pattern) : BASS(BASS), pattern(pattern) { build(); }
void build() {
for (auto& [i, j, w]: pattern) {
auto [a, b] = BASS.get_position(i, j);
i = a, j = b;
}
int n = BASS.n_block();
auto [H, W] = BASS.shape();
R0.resize(H), R1.resize(H);
for (auto& [a, b, w]: pattern) { R1[a] += w; }
FOR(i, H) {
int k = BASS.right[i];
if (k != -1) R0[i] = R1[k];
R1[i] += R0[i];
}
R0c = cumsum<WT>(R0);
RD.resize(W);
for (auto& [a, b, w]: pattern) RD[b] += w;
FOR(k, n) {
FOR_R(y, BASS.Y[k], BASS.Y[k + 1] - 1) { RD[y] += RD[y + 1]; }
}
FOR(y, W) {
int k = BASS.Y_to_block[y];
int a = BASS.X[k];
int b = a + BASS.height[y];
RD[y] += R0c[b] - R0c[a];
if (BASS.down[y] != -1) RD[y] += RD[BASS.down[y]];
}
if (ONLINE) {
// block 内の矩形クエリ用のデータ構造を構築
}
}
vc<WT> sum_query(vc<pair<int, int>> query) {
static_assert(!ONLINE);
int Q = len(query);
for (auto& [i, j]: query) {
auto [a, b] = BASS.get_position(i, j);
i = a, j = b;
}
vc<WT> ANS(Q);
auto [H, W] = BASS.shape();
vvc<int> PID(H), QID(H);
FOR(i, len(pattern)) { PID[get<0>(pattern[i])].eb(i); }
FOR(i, Q) { QID[query[i].fi].eb(i); }
FenwickTree<Monoid_Add<WT>> bit(W);
FOR_R(i, H) {
for (int p: PID[i]) {
auto [a, b, w] = pattern[p];
bit.add(b, w);
}
int r = BASS.Y[BASS.X_to_block[i]] + BASS.width[i];
for (int q: QID[i]) {
auto [a, b] = query[q];
ANS[q] += bit.sum(b, r);
int k = BASS.X_to_block[a];
int d = BASS.X[k] + BASS.height[b];
ANS[q] += R0c[d] - R0c[a];
int c = BASS.down[b];
if (c != -1) ANS[q] += RD[c];
}
}
return ANS;
}
WT sum_query(int i, int j) { assert(0); }
};