library

This documentation is automatically generated by online-judge-tools/verification-helper

View the Project on GitHub maspypy/library

:heavy_check_mark: test/1_mytest/lex_minmax_suffix.test.cpp

Depends on

Code

#define PROBLEM "https://judge.yosupo.jp/problem/aplusb"
#include "my_template.hpp"

#include "random/base.hpp"
#include "string/lex_min_suffix_for_all_prefix.hpp"
#include "string/lex_max_suffix_for_all_prefix.hpp"

void test_str(string S) {
  vc<int> A = lex_min_suffix_for_all_prefix(S);
  vc<int> B = lex_max_suffix_for_all_prefix(S);
  FOR(n, 1, len(S) + 1) {
    string t = S.substr(0, n);
    vc<string> suffix;
    FOR(i, len(t)) suffix.eb(t.substr(i));
    int a = min_element(all(suffix)) - suffix.begin();
    int b = max_element(all(suffix)) - suffix.begin();
    assert(A[n] == len(t) - a);
    assert(B[n] == len(t) - b);
  }
}

void test() {
  FOR(N, 1, 20) {
    FOR(K, 1, 10) {
      FOR(1000) {
        string S;
        FOR(N) S += 'a' + RNG(0, K);
        test_str(S);
      }
    }
  }
}

void solve() {
  int a, b;
  cin >> a >> b;
  cout << a + b << "\n";
}

signed main() {
  test();
  solve();
  return 0;
}
#line 1 "test/1_mytest/lex_minmax_suffix.test.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/aplusb"
#line 1 "my_template.hpp"
#if defined(LOCAL)
#include <my_template_compiled.hpp>
#else

// https://codeforces.com/blog/entry/96344
#pragma GCC optimize("Ofast,unroll-loops")
// いまの CF だとこれ入れると動かない?
// #pragma GCC target("avx2,popcnt")

#include <bits/stdc++.h>

using namespace std;

using ll = long long;
using u8 = uint8_t;
using u16 = uint16_t;
using u32 = uint32_t;
using u64 = uint64_t;
using i128 = __int128;
using u128 = unsigned __int128;
using f128 = __float128;

template <class T>
constexpr T infty = 0;
template <>
constexpr int infty<int> = 1'010'000'000;
template <>
constexpr ll infty<ll> = 2'020'000'000'000'000'000;
template <>
constexpr u32 infty<u32> = infty<int>;
template <>
constexpr u64 infty<u64> = infty<ll>;
template <>
constexpr i128 infty<i128> = i128(infty<ll>) * 2'000'000'000'000'000'000;
template <>
constexpr double infty<double> = infty<ll>;
template <>
constexpr long double infty<long double> = infty<ll>;

using pi = pair<ll, ll>;
using vi = vector<ll>;
template <class T>
using vc = vector<T>;
template <class T>
using vvc = vector<vc<T>>;
template <class T>
using vvvc = vector<vvc<T>>;
template <class T>
using vvvvc = vector<vvvc<T>>;
template <class T>
using vvvvvc = vector<vvvvc<T>>;
template <class T>
using pq = priority_queue<T>;
template <class T>
using pqg = priority_queue<T, vector<T>, greater<T>>;

#define vv(type, name, h, ...) vector<vector<type>> name(h, vector<type>(__VA_ARGS__))
#define vvv(type, name, h, w, ...) vector<vector<vector<type>>> name(h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))
#define vvvv(type, name, a, b, c, ...) \
  vector<vector<vector<vector<type>>>> name(a, vector<vector<vector<type>>>(b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))

// https://trap.jp/post/1224/
#define FOR1(a) for (ll _ = 0; _ < ll(a); ++_)
#define FOR2(i, a) for (ll i = 0; i < ll(a); ++i)
#define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i)
#define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c))
#define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i)
#define overload4(a, b, c, d, e, ...) e
#define overload3(a, b, c, d, ...) d
#define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__)
#define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__)

#define FOR_subset(t, s) for (ll t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s)))
#define all(x) x.begin(), x.end()
#define len(x) ll(x.size())
#define elif else if

#define eb emplace_back
#define mp make_pair
#define mt make_tuple
#define fi first
#define se second

#define stoi stoll

int popcnt(int x) { return __builtin_popcount(x); }
int popcnt(u32 x) { return __builtin_popcount(x); }
int popcnt(ll x) { return __builtin_popcountll(x); }
int popcnt(u64 x) { return __builtin_popcountll(x); }
int popcnt_sgn(int x) { return (__builtin_parity(unsigned(x)) & 1 ? -1 : 1); }
int popcnt_sgn(u32 x) { return (__builtin_parity(x) & 1 ? -1 : 1); }
int popcnt_sgn(ll x) { return (__builtin_parityll(x) & 1 ? -1 : 1); }
int popcnt_sgn(u64 x) { return (__builtin_parityll(x) & 1 ? -1 : 1); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2)
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2)
int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }

template <typename T>
T kth_bit(int k) {
  return T(1) << k;
}
template <typename T>
bool has_kth_bit(T x, int k) {
  return x >> k & 1;
}

template <typename T>
T floor(T a, T b) {
  return a / b - (a % b && (a ^ b) < 0);
}
template <typename T>
T ceil(T x, T y) {
  return floor(x + y - 1, y);
}
template <typename T>
T bmod(T x, T y) {
  return x - y * floor(x, y);
}
template <typename T>
pair<T, T> divmod(T x, T y) {
  T q = floor(x, y);
  return {q, x - q * y};
}

template <typename T, typename U>
T SUM(const vector<U> &A) {
  T sm = 0;
  for (auto &&a: A) sm += a;
  return sm;
}

#define MIN(v) *min_element(all(v))
#define MAX(v) *max_element(all(v))
#define LB(c, x) distance((c).begin(), lower_bound(all(c), (x)))
#define UB(c, x) distance((c).begin(), upper_bound(all(c), (x)))
#define UNIQUE(x) sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit()

template <typename T>
T POP(deque<T> &que) {
  T a = que.front();
  que.pop_front();
  return a;
}
template <typename T>
T POP(pq<T> &que) {
  T a = que.top();
  que.pop();
  return a;
}
template <typename T>
T POP(pqg<T> &que) {
  T a = que.top();
  que.pop();
  return a;
}
template <typename T>
T POP(vc<T> &que) {
  T a = que.back();
  que.pop_back();
  return a;
}

template <typename F>
ll binary_search(F check, ll ok, ll ng, bool check_ok = true) {
  if (check_ok) assert(check(ok));
  while (abs(ok - ng) > 1) {
    auto x = (ng + ok) / 2;
    (check(x) ? ok : ng) = x;
  }
  return ok;
}
template <typename F>
double binary_search_real(F check, double ok, double ng, int iter = 100) {
  FOR(iter) {
    double x = (ok + ng) / 2;
    (check(x) ? ok : ng) = x;
  }
  return (ok + ng) / 2;
}

template <class T, class S>
inline bool chmax(T &a, const S &b) {
  return (a < b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chmin(T &a, const S &b) {
  return (a > b ? a = b, 1 : 0);
}

// ? は -1
vc<int> s_to_vi(const string &S, char first_char) {
  vc<int> A(S.size());
  FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); }
  return A;
}

template <typename T, typename U>
vector<T> cumsum(vector<U> &A, int off = 1) {
  int N = A.size();
  vector<T> B(N + 1);
  FOR(i, N) { B[i + 1] = B[i] + A[i]; }
  if (off == 0) B.erase(B.begin());
  return B;
}

// stable sort
template <typename T>
vector<int> argsort(const vector<T> &A) {
  vector<int> ids(len(A));
  iota(all(ids), 0);
  sort(all(ids), [&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); });
  return ids;
}

// A[I[0]], A[I[1]], ...
template <typename T>
vc<T> rearrange(const vc<T> &A, const vc<int> &I) {
  vc<T> B(len(I));
  FOR(i, len(I)) B[i] = A[I[i]];
  return B;
}

template <typename T, typename... Vectors>
void concat(vc<T> &first, const Vectors &... others) {
  vc<T> &res = first;
  (res.insert(res.end(), others.begin(), others.end()), ...);
}
#endif
#line 3 "test/1_mytest/lex_minmax_suffix.test.cpp"

#line 2 "random/base.hpp"

u64 RNG_64() {
  static u64 x_ = u64(chrono::duration_cast<chrono::nanoseconds>(chrono::high_resolution_clock::now().time_since_epoch()).count()) * 10150724397891781847ULL;
  x_ ^= x_ << 7;
  return x_ ^= x_ >> 9;
}

u64 RNG(u64 lim) { return RNG_64() % lim; }

ll RNG(ll l, ll r) { return l + RNG_64() % (r - l); }
#line 1 "string/lyndon.hpp"

template <typename CHAR>
struct Incremental_Lyndon_Factorization {
  vc<CHAR> S;
  int i = 0, j = 0, k = 0;
  vc<int> minimum_suffix_len = {0};

  int add(CHAR c) {
    S.eb(c);
    // [j, j+(i-k)) simple
    while (i < len(S)) {
      if (k == i) {
        assert(j == k);
        ++i;
      }
      elif (S[k] == S[i]) { ++k, ++i; }
      elif (S[k] < S[i]) { k = j, ++i; }
      else {
        j += (i - j) / (i - k) * (i - k);
        i = k = j;
      }
    }
    if ((i - j) % (i - k) == 0) {
      minimum_suffix_len.eb(i - k);
    } else {
      minimum_suffix_len.eb(minimum_suffix_len[k]);
    }
    return minimum_suffix_len[i];
  }

  vc<int> factorize() {
    int i = len(S);
    vc<int> I;
    while (i) {
      I.eb(i);
      i -= minimum_suffix_len[i];
    }
    I.eb(0);
    reverse(all(I));
    return I;
  }
};
#line 2 "string/lex_min_suffix_for_all_prefix.hpp"

// ANS[i] := length of lex-min suffix of S[0,i)
vc<int> lex_min_suffix_for_all_prefix(string S) {
  int N = len(S);
  Incremental_Lyndon_Factorization<char> LD;
  FOR(i, N) LD.add(S[i]);
  return LD.minimum_suffix_len;
}
#line 2 "string/suffix_array.hpp"

#line 2 "alg/monoid/min.hpp"

template <typename E>
struct Monoid_Min {
  using X = E;
  using value_type = X;
  static constexpr X op(const X &x, const X &y) noexcept { return min(x, y); }
  static constexpr X unit() { return infty<E>; }
  static constexpr bool commute = true;
};
#line 2 "ds/sparse_table/sparse_table.hpp"

// 冪等なモノイドであることを仮定。disjoint sparse table より x 倍高速
template <class Monoid>
struct Sparse_Table {
  using MX = Monoid;
  using X = typename MX::value_type;
  int n, log;
  vvc<X> dat;

  Sparse_Table() {}
  Sparse_Table(int n) { build(n); }
  template <typename F>
  Sparse_Table(int n, F f) {
    build(n, f);
  }
  Sparse_Table(const vc<X>& v) { build(v); }

  void build(int m) {
    build(m, [](int i) -> X { return MX::unit(); });
  }
  void build(const vc<X>& v) {
    build(len(v), [&](int i) -> X { return v[i]; });
  }
  template <typename F>
  void build(int m, F f) {
    n = m, log = 1;
    while ((1 << log) < n) ++log;
    dat.resize(log);
    dat[0].resize(n);
    FOR(i, n) dat[0][i] = f(i);

    FOR(i, log - 1) {
      dat[i + 1].resize(len(dat[i]) - (1 << i));
      FOR(j, len(dat[i]) - (1 << i)) {
        dat[i + 1][j] = MX::op(dat[i][j], dat[i][j + (1 << i)]);
      }
    }
  }

  X prod(int L, int R) {
    if (L == R) return MX::unit();
    if (R == L + 1) return dat[0][L];
    int k = topbit(R - L - 1);
    return MX::op(dat[k][L], dat[k][R - (1 << k)]);
  }

  template <class F>
  int max_right(const F check, int L) {
    assert(0 <= L && L <= n && check(MX::unit()));
    if (L == n) return n;
    int ok = L, ng = n + 1;
    while (ok + 1 < ng) {
      int k = (ok + ng) / 2;
      bool bl = check(prod(L, k));
      if (bl) ok = k;
      if (!bl) ng = k;
    }
    return ok;
  }

  template <class F>
  int min_left(const F check, int R) {
    assert(0 <= R && R <= n && check(MX::unit()));
    if (R == 0) return 0;
    int ok = R, ng = -1;
    while (ng + 1 < ok) {
      int k = (ok + ng) / 2;
      bool bl = check(prod(k, R));
      if (bl) ok = k;
      if (!bl) ng = k;
    }
    return ok;
  }
};
#line 2 "ds/segtree/segtree.hpp"

template <class Monoid>
struct SegTree {
  using MX = Monoid;
  using X = typename MX::value_type;
  using value_type = X;
  vc<X> dat;
  int n, log, size;

  SegTree() {}
  SegTree(int n) { build(n); }
  template <typename F>
  SegTree(int n, F f) {
    build(n, f);
  }
  SegTree(const vc<X>& v) { build(v); }

  void build(int m) {
    build(m, [](int i) -> X { return MX::unit(); });
  }
  void build(const vc<X>& v) {
    build(len(v), [&](int i) -> X { return v[i]; });
  }
  template <typename F>
  void build(int m, F f) {
    n = m, log = 1;
    while ((1 << log) < n) ++log;
    size = 1 << log;
    dat.assign(size << 1, MX::unit());
    FOR(i, n) dat[size + i] = f(i);
    FOR_R(i, 1, size) update(i);
  }

  X get(int i) { return dat[size + i]; }
  vc<X> get_all() { return {dat.begin() + size, dat.begin() + size + n}; }

  void update(int i) { dat[i] = Monoid::op(dat[2 * i], dat[2 * i + 1]); }
  void set(int i, const X& x) {
    assert(i < n);
    dat[i += size] = x;
    while (i >>= 1) update(i);
  }

  void multiply(int i, const X& x) {
    assert(i < n);
    i += size;
    dat[i] = Monoid::op(dat[i], x);
    while (i >>= 1) update(i);
  }

  X prod(int L, int R) {
    assert(0 <= L && L <= R && R <= n);
    X vl = Monoid::unit(), vr = Monoid::unit();
    L += size, R += size;
    while (L < R) {
      if (L & 1) vl = Monoid::op(vl, dat[L++]);
      if (R & 1) vr = Monoid::op(dat[--R], vr);
      L >>= 1, R >>= 1;
    }
    return Monoid::op(vl, vr);
  }

  X prod_all() { return dat[1]; }

  template <class F>
  int max_right(F check, int L) {
    assert(0 <= L && L <= n && check(Monoid::unit()));
    if (L == n) return n;
    L += size;
    X sm = Monoid::unit();
    do {
      while (L % 2 == 0) L >>= 1;
      if (!check(Monoid::op(sm, dat[L]))) {
        while (L < size) {
          L = 2 * L;
          if (check(Monoid::op(sm, dat[L]))) { sm = Monoid::op(sm, dat[L++]); }
        }
        return L - size;
      }
      sm = Monoid::op(sm, dat[L++]);
    } while ((L & -L) != L);
    return n;
  }

  template <class F>
  int min_left(F check, int R) {
    assert(0 <= R && R <= n && check(Monoid::unit()));
    if (R == 0) return 0;
    R += size;
    X sm = Monoid::unit();
    do {
      --R;
      while (R > 1 && (R % 2)) R >>= 1;
      if (!check(Monoid::op(dat[R], sm))) {
        while (R < size) {
          R = 2 * R + 1;
          if (check(Monoid::op(dat[R], sm))) { sm = Monoid::op(dat[R--], sm); }
        }
        return R + 1 - size;
      }
      sm = Monoid::op(dat[R], sm);
    } while ((R & -R) != R);
    return 0;
  }

  // prod_{l<=i<r} A[i xor x]
  X xor_prod(int l, int r, int xor_val) {
    static_assert(Monoid::commute);
    X x = Monoid::unit();
    for (int k = 0; k < log + 1; ++k) {
      if (l >= r) break;
      if (l & 1) { x = Monoid::op(x, dat[(size >> k) + ((l++) ^ xor_val)]); }
      if (r & 1) { x = Monoid::op(x, dat[(size >> k) + ((--r) ^ xor_val)]); }
      l /= 2, r /= 2, xor_val /= 2;
    }
    return x;
  }
};
#line 6 "string/suffix_array.hpp"

// 辞書順 i 番目の suffix が j 文字目始まりであるとき、
// SA[i] = j, ISA[j] = i
// |S|>0 を前提(そうでない場合 dummy 文字を追加して利用せよ)
template <bool USE_SPARSE_TABLE = true>
struct Suffix_Array {
  vc<int> SA;
  vc<int> ISA;
  vc<int> LCP;
  using Mono = Monoid_Min<int>;
  using SegType = conditional_t<USE_SPARSE_TABLE, Sparse_Table<Mono>, SegTree<Mono> >;
  SegType seg;
  bool build_seg;

  Suffix_Array() {}
  Suffix_Array(string& s) {
    build_seg = 0;
    assert(len(s) > 0);
    char first = 127, last = 0;
    for (auto&& c: s) {
      chmin(first, c);
      chmax(last, c);
    }
    SA = calc_suffix_array(s, first, last);
    calc_LCP(s);
  }

  Suffix_Array(vc<int>& s) {
    build_seg = 0;
    assert(len(s) > 0);
    SA = calc_suffix_array(s);
    calc_LCP(s);
  }

  // lcp(S[i:], S[j:])
  int lcp(int i, int j) {
    if (!build_seg) {
      build_seg = true;
      seg.build(LCP);
    }
    int n = len(SA);
    if (i == n || j == n) return 0;
    if (i == j) return n - i;
    i = ISA[i], j = ISA[j];
    if (i > j) swap(i, j);
    return seg.prod(i, j);
  }

  // S[i:] との lcp が n 以上であるような半開区間
  pair<int, int> lcp_range(int i, int n) {
    if (!build_seg) {
      build_seg = true;
      seg.build(LCP);
    }
    i = ISA[i];
    int a = seg.min_left([&](auto e) -> bool { return e >= n; }, i);
    int b = seg.max_right([&](auto e) -> bool { return e >= n; }, i);
    return {a, b + 1};
  }

  // -1: S[L1:R1) < S[L2, R2)
  //  0: S[L1:R1) = S[L2, R2)
  // +1: S[L1:R1) > S[L2, R2)
  int compare(int L1, int R1, int L2, int R2) {
    int n1 = R1 - L1, n2 = R2 - L2;
    int n = lcp(L1, L2);
    if (n == n1 && n == n2) return 0;
    if (n == n1) return -1;
    if (n == n2) return 1;
    return (ISA[L1 + n] > ISA[L2 + n] ? 1 : -1);
  }

private:
  void induced_sort(const vc<int>& vect, int val_range, vc<int>& SA, const vc<bool>& sl, const vc<int>& lms_idx) {
    vc<int> l(val_range, 0), r(val_range, 0);
    for (int c: vect) {
      if (c + 1 < val_range) ++l[c + 1];
      ++r[c];
    }
    partial_sum(l.begin(), l.end(), l.begin());
    partial_sum(r.begin(), r.end(), r.begin());
    fill(SA.begin(), SA.end(), -1);
    for (int i = (int)lms_idx.size() - 1; i >= 0; --i) SA[--r[vect[lms_idx[i]]]] = lms_idx[i];
    for (int i: SA)
      if (i >= 1 && sl[i - 1]) SA[l[vect[i - 1]]++] = i - 1;
    fill(r.begin(), r.end(), 0);
    for (int c: vect) ++r[c];
    partial_sum(r.begin(), r.end(), r.begin());
    for (int k = (int)SA.size() - 1, i = SA[k]; k >= 1; --k, i = SA[k])
      if (i >= 1 && !sl[i - 1]) { SA[--r[vect[i - 1]]] = i - 1; }
  }

  vc<int> SA_IS(const vc<int>& vect, int val_range) {
    const int n = vect.size();
    vc<int> SA(n), lms_idx;
    vc<bool> sl(n);
    sl[n - 1] = false;
    for (int i = n - 2; i >= 0; --i) {
      sl[i] = (vect[i] > vect[i + 1] || (vect[i] == vect[i + 1] && sl[i + 1]));
      if (sl[i] && !sl[i + 1]) lms_idx.push_back(i + 1);
    }
    reverse(lms_idx.begin(), lms_idx.end());
    induced_sort(vect, val_range, SA, sl, lms_idx);
    vc<int> new_lms_idx(lms_idx.size()), lms_vec(lms_idx.size());
    for (int i = 0, k = 0; i < n; ++i)
      if (!sl[SA[i]] && SA[i] >= 1 && sl[SA[i] - 1]) { new_lms_idx[k++] = SA[i]; }
    int cur = 0;
    SA[n - 1] = cur;
    for (size_t k = 1; k < new_lms_idx.size(); ++k) {
      int i = new_lms_idx[k - 1], j = new_lms_idx[k];
      if (vect[i] != vect[j]) {
        SA[j] = ++cur;
        continue;
      }
      bool flag = false;
      for (int a = i + 1, b = j + 1;; ++a, ++b) {
        if (vect[a] != vect[b]) {
          flag = true;
          break;
        }
        if ((!sl[a] && sl[a - 1]) || (!sl[b] && sl[b - 1])) {
          flag = !((!sl[a] && sl[a - 1]) && (!sl[b] && sl[b - 1]));
          break;
        }
      }
      SA[j] = (flag ? ++cur : cur);
    }
    for (size_t i = 0; i < lms_idx.size(); ++i) lms_vec[i] = SA[lms_idx[i]];
    if (cur + 1 < (int)lms_idx.size()) {
      auto lms_SA = SA_IS(lms_vec, cur + 1);
      for (size_t i = 0; i < lms_idx.size(); ++i) { new_lms_idx[i] = lms_idx[lms_SA[i]]; }
    }
    induced_sort(vect, val_range, SA, sl, new_lms_idx);
    return SA;
  }

  vc<int> calc_suffix_array(const string& s, const char first = 'a', const char last = 'z') {
    vc<int> vect(s.size() + 1);
    copy(begin(s), end(s), begin(vect));
    for (auto& x: vect) x -= (int)first - 1;
    vect.back() = 0;
    auto ret = SA_IS(vect, (int)last - (int)first + 2);
    ret.erase(ret.begin());
    return ret;
  }

  vc<int> calc_suffix_array(const vc<int>& s) {
    vc<int> ss = s;
    UNIQUE(ss);

    vc<int> vect(s.size() + 1);
    copy(all(s), vect.begin());
    for (auto& x: vect) x = LB(ss, x) + 1;
    vect.back() = 0;
    auto ret = SA_IS(vect, MAX(vect) + 2);
    ret.erase(ret.begin());
    return ret;
  }

  template <typename STRING>
  void calc_LCP(const STRING& s) {
    int n = s.size(), k = 0;
    ISA.resize(n);
    LCP.resize(n);
    for (int i = 0; i < n; i++) ISA[SA[i]] = i;
    for (int i = 0; i < n; i++, k ? k-- : 0) {
      if (ISA[i] == n - 1) {
        k = 0;
        continue;
      }
      int j = SA[ISA[i] + 1];
      while (i + k < n && j + k < n && s[i + k] == s[j + k]) k++;
      LCP[ISA[i]] = k;
    }
    LCP.resize(n - 1);
  }
};
#line 2 "string/lex_max_suffix_for_all_prefix.hpp"

// ANS[i] := length of lex-max suffix of S[0,i), O(|S|) time
// https://www.codechef.com/START137A/problems/CABABAA
vc<int> lex_max_suffix_for_all_prefix(string S) {
  // suffix array 順をもとにして1文字ずつ消していく.
  // 手前のものに抜かされるのは, 自分より長いものの prefix になるとき.
  // 一度抜かされたらもう復活することはない.
  int N = len(S);
  Suffix_Array X(S);
  auto &SA = X.SA, &LCP = X.LCP;
  vvc<int> rm(N);
  vc<pair<int, int>> st;
  FOR(i, N) {
    int j = SA[i];
    int k = (i == 0 ? infty<int> : LCP[i - 1]);
    while (len(st) && st.back().fi > j) {
      chmin(k, st.back().se);
      POP(st);
    }
    if (len(st)) { rm[j + k].eb(j); }
    st.eb(j, k);
  }
  int p = N - 1;
  vc<int> ANS(N + 1);
  vc<bool> ng(N);
  FOR_R(i, 1, N + 1) {
    while (ng[SA[p]] || i <= SA[p]) --p;
    ANS[i] = i - SA[p];
    for (auto& j: rm[i - 1]) ng[j] = 1;
  }
  return ANS;
}
#line 7 "test/1_mytest/lex_minmax_suffix.test.cpp"

void test_str(string S) {
  vc<int> A = lex_min_suffix_for_all_prefix(S);
  vc<int> B = lex_max_suffix_for_all_prefix(S);
  FOR(n, 1, len(S) + 1) {
    string t = S.substr(0, n);
    vc<string> suffix;
    FOR(i, len(t)) suffix.eb(t.substr(i));
    int a = min_element(all(suffix)) - suffix.begin();
    int b = max_element(all(suffix)) - suffix.begin();
    assert(A[n] == len(t) - a);
    assert(B[n] == len(t) - b);
  }
}

void test() {
  FOR(N, 1, 20) {
    FOR(K, 1, 10) {
      FOR(1000) {
        string S;
        FOR(N) S += 'a' + RNG(0, K);
        test_str(S);
      }
    }
  }
}

void solve() {
  int a, b;
  cin >> a >> b;
  cout << a + b << "\n";
}

signed main() {
  test();
  solve();
  return 0;
}
Back to top page