This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub maspypy/library
#include "random/random_polygon.hpp"
#include "random/base.hpp" #include "geo/base.hpp" #include "geo/convex_hull.hpp" #include "geo/cross_point.hpp" #include "geo/count_points_in_triangles.hpp" vc<Point<ll>> random_polygon(int N, int XY_ABS_MAX = 10) { assert(N >= 3); using P = Point<ll>; auto trial = [&]() -> vc<P> { set<Point<ll>> S; while (len(S) < N) { int x = RNG(-XY_ABS_MAX, XY_ABS_MAX + 1); int y = RNG(-XY_ABS_MAX, XY_ABS_MAX + 1); S.insert(Point<ll>(x, y)); } vc<P> point(all(S)); auto I = ConvexHull<ll, true>(point); Count_Points_In_Triangles CT(point, point); vc<int> other; vc<int> done(N); for (auto& i: I) done[i]++; if (MAX(done) >= 2) return {}; FOR(i, N) if (!done[i]) other.eb(i); int fail = 0; while (len(other)) { if (fail > 1000) return {}; ++fail; int i = RNG(0, len(I)), j = RNG(0, len(other)); swap(other[j], other.back()); int a = I[i], b = I[(i + 1) % len(I)], c = other.back(); if ((point[b] - point[a]).det(point[c] - point[a]) < 0) continue; if (CT.count3(a, b, c)) continue; if (CT.count2(a, c) + CT.count2(b, c)) continue; bool ok = 1; for (auto& v: {a, b}) { FOR(i, len(I)) { Segment<ll> S1(point[v], point[c]); Segment<ll> S2(point[I[i]], point[I[(i + 1) % len(I)]]); if (count_cross(S1, S2, false)) ok = 0; } } if (!ok) continue; fail = 0; I.insert(I.begin() + i + 1, POP(other)); } point = rearrange(point, I); FOR(i, N) { if ((point[(i + 2) % N] - point[i]).det(point[(i + 1) % N] - point[i]) == 0) return {}; } return point; }; while (1) { vc<P> ANS = trial(); if (ANS.empty()) continue; int k = RNG(0, len(ANS)); rotate(ANS.begin(), ANS.begin() + k, ANS.end()); return ANS; } }
#line 1 "random/random_polygon.hpp" #line 2 "random/base.hpp" u64 RNG_64() { static u64 x_ = u64(chrono::duration_cast<chrono::nanoseconds>(chrono::high_resolution_clock::now().time_since_epoch()).count()) * 10150724397891781847ULL; x_ ^= x_ << 7; return x_ ^= x_ >> 9; } u64 RNG(u64 lim) { return RNG_64() % lim; } ll RNG(ll l, ll r) { return l + RNG_64() % (r - l); } #line 2 "geo/base.hpp" template <typename T> struct Point { T x, y; Point() : x(0), y(0) {} template <typename A, typename B> Point(A x, B y) : x(x), y(y) {} template <typename A, typename B> Point(pair<A, B> p) : x(p.fi), y(p.se) {} Point operator+=(const Point p) { x += p.x, y += p.y; return *this; } Point operator-=(const Point p) { x -= p.x, y -= p.y; return *this; } Point operator+(Point p) const { return {x + p.x, y + p.y}; } Point operator-(Point p) const { return {x - p.x, y - p.y}; } bool operator==(Point p) const { return x == p.x && y == p.y; } bool operator!=(Point p) const { return x != p.x || y != p.y; } Point operator-() const { return {-x, -y}; } Point operator*(T t) const { return {x * t, y * t}; } Point operator/(T t) const { return {x / t, y / t}; } bool operator<(Point p) const { if (x != p.x) return x < p.x; return y < p.y; } T dot(const Point& other) const { return x * other.x + y * other.y; } T det(const Point& other) const { return x * other.y - y * other.x; } double norm() { return sqrtl(x * x + y * y); } double angle() { return atan2(y, x); } Point rotate(double theta) { static_assert(!is_integral<T>::value); double c = cos(theta), s = sin(theta); return Point{c * x - s * y, s * x + c * y}; } Point rot90(bool ccw) { return (ccw ? Point{-y, x} : Point{y, -x}); } }; #ifdef FASTIO template <typename T> void rd(Point<T>& p) { fastio::rd(p.x), fastio::rd(p.y); } template <typename T> void wt(Point<T>& p) { fastio::wt(p.x); fastio::wt(' '); fastio::wt(p.y); } #endif // A -> B -> C と進むときに、左に曲がるならば +1、右に曲がるならば -1 template <typename T> int ccw(Point<T> A, Point<T> B, Point<T> C) { T x = (B - A).det(C - A); if (x > 0) return 1; if (x < 0) return -1; return 0; } template <typename REAL, typename T, typename U> REAL dist(Point<T> A, Point<U> B) { REAL dx = REAL(A.x) - REAL(B.x); REAL dy = REAL(A.y) - REAL(B.y); return sqrt(dx * dx + dy * dy); } // ax+by+c template <typename T> struct Line { T a, b, c; Line(T a, T b, T c) : a(a), b(b), c(c) {} Line(Point<T> A, Point<T> B) { a = A.y - B.y, b = B.x - A.x, c = A.x * B.y - A.y * B.x; } Line(T x1, T y1, T x2, T y2) : Line(Point<T>(x1, y1), Point<T>(x2, y2)) {} template <typename U> U eval(Point<U> P) { return a * P.x + b * P.y + c; } template <typename U> T eval(U x, U y) { return a * x + b * y + c; } // 同じ直線が同じ a,b,c で表現されるようにする void normalize() { static_assert(is_same_v<T, int> || is_same_v<T, long long>); T g = gcd(gcd(abs(a), abs(b)), abs(c)); a /= g, b /= g, c /= g; if (b < 0) { a = -a, b = -b, c = -c; } if (b == 0 && a < 0) { a = -a, b = -b, c = -c; } } bool is_parallel(Line other) { return a * other.b - b * other.a == 0; } bool is_orthogonal(Line other) { return a * other.a + b * other.b == 0; } }; template <typename T> struct Segment { Point<T> A, B; Segment(Point<T> A, Point<T> B) : A(A), B(B) {} Segment(T x1, T y1, T x2, T y2) : Segment(Point<T>(x1, y1), Point<T>(x2, y2)) {} bool contain(Point<T> C) { T det = (C - A).det(B - A); if (det != 0) return 0; return (C - A).dot(B - A) >= 0 && (C - B).dot(A - B) >= 0; } Line<T> to_Line() { return Line(A, B); } }; template <typename REAL> struct Circle { Point<REAL> O; REAL r; Circle(Point<REAL> O, REAL r) : O(O), r(r) {} Circle(REAL x, REAL y, REAL r) : O(x, y), r(r) {} template <typename T> bool contain(Point<T> p) { REAL dx = p.x - O.x, dy = p.y - O.y; return dx * dx + dy * dy <= r * r; } }; #line 2 "geo/convex_hull.hpp" #line 4 "geo/convex_hull.hpp" // allow_180=true で同一座標点があるとこわれる // full なら I[0] が sorted で min になる template <typename T, bool allow_180 = false> vector<int> ConvexHull(vector<Point<T>>& XY, string mode = "full", bool sorted = false) { assert(mode == "full" || mode == "lower" || mode == "upper"); ll N = XY.size(); if (N == 1) return {0}; if (N == 2) { if (XY[0] < XY[1]) return {0, 1}; if (XY[1] < XY[0]) return {1, 0}; return {0}; } vc<int> I(N); if (sorted) { FOR(i, N) I[i] = i; } else { I = argsort(XY); } if constexpr (allow_180) { FOR(i, N - 1) assert(XY[i] != XY[i + 1]); } auto check = [&](ll i, ll j, ll k) -> bool { T det = (XY[j] - XY[i]).det(XY[k] - XY[i]); if constexpr (allow_180) return det >= 0; return det > T(0); }; auto calc = [&]() { vector<int> P; for (auto&& k: I) { while (P.size() > 1) { auto i = P[P.size() - 2]; auto j = P[P.size() - 1]; if (check(i, j, k)) break; P.pop_back(); } P.eb(k); } return P; }; vc<int> P; if (mode == "full" || mode == "lower") { vc<int> Q = calc(); P.insert(P.end(), all(Q)); } if (mode == "full" || mode == "upper") { if (!P.empty()) P.pop_back(); reverse(all(I)); vc<int> Q = calc(); P.insert(P.end(), all(Q)); } if (mode == "upper") reverse(all(P)); while (len(P) >= 2 && XY[P[0]] == XY[P.back()]) P.pop_back(); return P; } #line 2 "geo/cross_point.hpp" #line 4 "geo/cross_point.hpp" // 平行でないことを仮定 template <typename REAL, typename T> Point<REAL> cross_point(const Line<T> L1, const Line<T> L2) { T det = L1.a * L2.b - L1.b * L2.a; assert(det != 0); REAL x = -REAL(L1.c) * L2.b + REAL(L1.b) * L2.c; REAL y = -REAL(L1.a) * L2.c + REAL(L1.c) * L2.a; return Point<REAL>(x / det, y / det); } // 浮動小数点数はエラー // 0: 交点なし // 1: 一意な交点 // 2:2 つ以上の交点(整数型を利用して厳密にやる) template <typename T> int count_cross(Segment<T> S1, Segment<T> S2, bool include_ends) { static_assert(!std::is_floating_point<T>::value); Line<T> L1 = S1.to_Line(); Line<T> L2 = S2.to_Line(); if (L1.is_parallel(L2)) { if (L1.eval(S2.A) != 0) return 0; // 4 点とも同一直線上にある T a1 = S1.A.x, b1 = S1.B.x; T a2 = S2.A.x, b2 = S2.B.x; if (a1 == b1) { a1 = S1.A.y, b1 = S1.B.y; a2 = S2.A.y, b2 = S2.B.y; } if (a1 > b1) swap(a1, b1); if (a2 > b2) swap(a2, b2); T a = max(a1, a2); T b = min(b1, b2); if (a < b) return 2; if (a > b) return 0; return (include_ends ? 1 : 0); } // 平行でない場合 T a1 = L2.eval(S1.A), b1 = L2.eval(S1.B); T a2 = L1.eval(S2.A), b2 = L1.eval(S2.B); if (a1 > b1) swap(a1, b1); if (a2 > b2) swap(a2, b2); bool ok1 = 0, ok2 = 0; if (include_ends) { ok1 = (a1 <= T(0)) && (T(0) <= b1); ok2 = (a2 <= T(0)) && (T(0) <= b2); } else { ok1 = (a1 < T(0)) && (T(0) < b1); ok2 = (a2 < T(0)) && (T(0) < b2); } return (ok1 && ok2 ? 1 : 0); } // 4 次式まで登場している、オーバーフロー注意! // https://codeforces.com/contest/607/problem/E template <typename REAL, typename T> vc<Point<REAL>> cross_point(const Circle<T> C, const Line<T> L) { T a = L.a, b = L.b, c = L.a * (C.O.x) + L.b * (C.O.y) + L.c; T r = C.r; bool SW = 0; T abs_a = (a < 0 ? -a : a); T abs_b = (b < 0 ? -b : b); if (abs_a < abs_b) { swap(a, b); SW = 1; } // ax+by+c=0, x^2+y^2=r^2 T D = 4 * c * c * b * b - 4 * (a * a + b * b) * (c * c - a * a * r * r); if (D < 0) return {}; REAL sqD = sqrtl(D); REAL y1 = (-2 * b * c + sqD) / (2 * (a * a + b * b)); REAL y2 = (-2 * b * c - sqD) / (2 * (a * a + b * b)); REAL x1 = (-b * y1 - c) / a; REAL x2 = (-b * y2 - c) / a; if (SW) swap(x1, y1), swap(x2, y2); x1 += C.O.x, x2 += C.O.x; y1 += C.O.y, y2 += C.O.y; if (D == 0) return {Point<REAL>(x1, y1)}; return {Point<REAL>(x1, y1), Point<REAL>(x2, y2)}; } // https://codeforces.com/contest/2/problem/C template <typename REAL, typename T> tuple<bool, Point<T>, Point<T>> cross_point_circle(Circle<T> C1, Circle<T> C2) { using P = Point<T>; P O{0, 0}; P A = C1.O, B = C2.O; if (A == B) return {false, O, O}; T d = (B - A).norm(); REAL cos_val = (C1.r * C1.r + d * d - C2.r * C2.r) / (2 * C1.r * d); if (cos_val < -1 || 1 < cos_val) return {false, O, O}; REAL t = acos(cos_val); REAL u = (B - A).angle(); P X = A + P{C1.r * cos(u + t), C1.r * sin(u + t)}; P Y = A + P{C1.r * cos(u - t), C1.r * sin(u - t)}; return {true, X, Y}; } #line 1 "geo/count_points_in_triangles.hpp" #line 2 "geo/angle_sort.hpp" #line 4 "geo/angle_sort.hpp" // lower: -1, origin: 0, upper: 1, (-pi,pi] template <typename T> int lower_or_upper(const Point<T> &p) { if (p.y != 0) return (p.y > 0 ? 1 : -1); if (p.x > 0) return -1; if (p.x < 0) return 1; return 0; } // L<R:-1, L==R:0, L>R:1, (-pi,pi] template <typename T> int angle_comp_3(const Point<T> &L, const Point<T> &R) { int a = lower_or_upper(L), b = lower_or_upper(R); if (a != b) return (a < b ? -1 : +1); T det = L.det(R); if (det > 0) return -1; if (det < 0) return 1; return 0; } // 偏角ソートに対する argsort, (-pi,pi] template <typename T> vector<int> angle_sort(vector<Point<T>> &P) { vc<int> I(len(P)); FOR(i, len(P)) I[i] = i; sort(all(I), [&](auto &L, auto &R) -> bool { return angle_comp_3(P[L], P[R]) == -1; }); return I; } // 偏角ソートに対する argsort, (-pi,pi] template <typename T> vector<int> angle_sort(vector<pair<T, T>> &P) { vc<Point<T>> tmp(len(P)); FOR(i, len(P)) tmp[i] = Point<T>(P[i]); return angle_sort<T>(tmp); } #line 2 "ds/fenwicktree/fenwicktree_01.hpp" #line 2 "alg/monoid/add.hpp" template <typename E> struct Monoid_Add { using X = E; using value_type = X; static constexpr X op(const X &x, const X &y) noexcept { return x + y; } static constexpr X inverse(const X &x) noexcept { return -x; } static constexpr X power(const X &x, ll n) noexcept { return X(n) * x; } static constexpr X unit() { return X(0); } static constexpr bool commute = true; }; #line 3 "ds/fenwicktree/fenwicktree.hpp" template <typename Monoid> struct FenwickTree { using G = Monoid; using MX = Monoid; using E = typename G::value_type; int n; vector<E> dat; E total; FenwickTree() {} FenwickTree(int n) { build(n); } template <typename F> FenwickTree(int n, F f) { build(n, f); } FenwickTree(const vc<E>& v) { build(v); } void build(int m) { n = m; dat.assign(m, G::unit()); total = G::unit(); } void build(const vc<E>& v) { build(len(v), [&](int i) -> E { return v[i]; }); } template <typename F> void build(int m, F f) { n = m; dat.clear(); dat.reserve(n); total = G::unit(); FOR(i, n) { dat.eb(f(i)); } for (int i = 1; i <= n; ++i) { int j = i + (i & -i); if (j <= n) dat[j - 1] = G::op(dat[i - 1], dat[j - 1]); } total = prefix_sum(m); } E prod_all() { return total; } E sum_all() { return total; } E sum(int k) { return prefix_sum(k); } E prod(int k) { return prefix_prod(k); } E prefix_sum(int k) { return prefix_prod(k); } E prefix_prod(int k) { chmin(k, n); E ret = G::unit(); for (; k > 0; k -= k & -k) ret = G::op(ret, dat[k - 1]); return ret; } E sum(int L, int R) { return prod(L, R); } E prod(int L, int R) { chmax(L, 0), chmin(R, n); if (L == 0) return prefix_prod(R); assert(0 <= L && L <= R && R <= n); E pos = G::unit(), neg = G::unit(); while (L < R) { pos = G::op(pos, dat[R - 1]), R -= R & -R; } while (R < L) { neg = G::op(neg, dat[L - 1]), L -= L & -L; } return G::op(pos, G::inverse(neg)); } vc<E> get_all() { vc<E> res(n); FOR(i, n) res[i] = prod(i, i + 1); return res; } void add(int k, E x) { multiply(k, x); } void multiply(int k, E x) { static_assert(G::commute); total = G::op(total, x); for (++k; k <= n; k += k & -k) dat[k - 1] = G::op(dat[k - 1], x); } void set(int k, E x) { add(k, G::op(G::inverse(prod(k, k + 1)), x)); } template <class F> int max_right(const F check, int L = 0) { assert(check(G::unit())); E s = G::unit(); int i = L; // 2^k 進むとダメ int k = [&]() { while (1) { if (i % 2 == 1) { s = G::op(s, G::inverse(dat[i - 1])), i -= 1; } if (i == 0) { return topbit(n) + 1; } int k = lowbit(i) - 1; if (i + (1 << k) > n) return k; E t = G::op(s, dat[i + (1 << k) - 1]); if (!check(t)) { return k; } s = G::op(s, G::inverse(dat[i - 1])), i -= i & -i; } }(); while (k) { --k; if (i + (1 << k) - 1 < len(dat)) { E t = G::op(s, dat[i + (1 << k) - 1]); if (check(t)) { i += (1 << k), s = t; } } } return i; } // check(i, x) template <class F> int max_right_with_index(const F check, int L = 0) { assert(check(L, G::unit())); E s = G::unit(); int i = L; // 2^k 進むとダメ int k = [&]() { while (1) { if (i % 2 == 1) { s = G::op(s, G::inverse(dat[i - 1])), i -= 1; } if (i == 0) { return topbit(n) + 1; } int k = lowbit(i) - 1; if (i + (1 << k) > n) return k; E t = G::op(s, dat[i + (1 << k) - 1]); if (!check(i + (1 << k), t)) { return k; } s = G::op(s, G::inverse(dat[i - 1])), i -= i & -i; } }(); while (k) { --k; if (i + (1 << k) - 1 < len(dat)) { E t = G::op(s, dat[i + (1 << k) - 1]); if (check(i + (1 << k), t)) { i += (1 << k), s = t; } } } return i; } template <class F> int min_left(const F check, int R) { assert(check(G::unit())); E s = G::unit(); int i = R; // false になるところまで戻る int k = 0; while (i > 0 && check(s)) { s = G::op(s, dat[i - 1]); k = lowbit(i); i -= i & -i; } if (check(s)) { assert(i == 0); return 0; } // 2^k 進むと ok になる // false を維持して進む while (k) { --k; E t = G::op(s, G::inverse(dat[i + (1 << k) - 1])); if (!check(t)) { i += (1 << k), s = t; } } return i + 1; } int kth(E k, int L = 0) { return max_right([&k](E x) -> bool { return x <= k; }, L); } }; #line 4 "ds/fenwicktree/fenwicktree_01.hpp" struct FenwickTree_01 { int N, n; vc<u64> dat; FenwickTree<Monoid_Add<int>> bit; FenwickTree_01() {} FenwickTree_01(int n) { build(n); } template <typename F> FenwickTree_01(int n, F f) { build(n, f); } void build(int m) { N = m; n = ceil<int>(N + 1, 64); dat.assign(n, u64(0)); bit.build(n); } template <typename F> void build(int m, F f) { N = m; n = ceil<int>(N + 1, 64); dat.assign(n, u64(0)); FOR(i, N) { dat[i / 64] |= u64(f(i)) << (i % 64); } bit.build(n, [&](int i) -> int { return popcnt(dat[i]); }); } int sum_all() { return bit.sum_all(); } int sum(int k) { return prefix_sum(k); } int prefix_sum(int k) { int ans = bit.sum(k / 64); ans += popcnt(dat[k / 64] & ((u64(1) << (k % 64)) - 1)); return ans; } int sum(int L, int R) { if (L == 0) return prefix_sum(R); int ans = 0; ans -= popcnt(dat[L / 64] & ((u64(1) << (L % 64)) - 1)); ans += popcnt(dat[R / 64] & ((u64(1) << (R % 64)) - 1)); ans += bit.sum(L / 64, R / 64); return ans; } void add(int k, int x) { if (x == 1) add(k); elif (x == -1) remove(k); else assert(0); } void add(int k) { dat[k / 64] |= u64(1) << (k % 64); bit.add(k / 64, 1); } void remove(int k) { dat[k / 64] &= ~(u64(1) << (k % 64)); bit.add(k / 64, -1); } int kth(int k, int L = 0) { if (k >= sum_all()) return N; k += popcnt(dat[L / 64] & ((u64(1) << (L % 64)) - 1)); L /= 64; int mid = 0; auto check = [&](auto e) -> bool { if (e <= k) chmax(mid, e); return e <= k; }; int idx = bit.max_right(check, L); if (idx == n) return N; k -= mid; u64 x = dat[idx]; int p = popcnt(x); if (p <= k) return N; k = binary_search([&](int n) -> bool { return (p - popcnt(x >> n)) <= k; }, 0, 64, 0); return 64 * idx + k; } int next(int k) { int idx = k / 64; k %= 64; u64 x = dat[idx] & ~((u64(1) << k) - 1); if (x) return 64 * idx + lowbit(x); idx = bit.kth(0, idx + 1); if (idx == n || !dat[idx]) return N; return 64 * idx + lowbit(dat[idx]); } int prev(int k) { if (k == N) --k; int idx = k / 64; k %= 64; u64 x = dat[idx]; if (k < 63) x &= (u64(1) << (k + 1)) - 1; if (x) return 64 * idx + topbit(x); idx = bit.min_left([&](auto e) -> bool { return e <= 0; }, idx) - 1; if (idx == -1) return -1; return 64 * idx + topbit(dat[idx]); } }; #line 6 "geo/count_points_in_triangles.hpp" // 点群 A, B を入力 (Point<ll>) // query(i,j,k):三角形 AiAjAk 内部の Bl の個数(非負)を返す // 前計算 O(NMlogM)、クエリ O(1) // https://codeforces.com/contest/13/problem/D // https://codeforces.com/contest/852/problem/H struct Count_Points_In_Triangles { using P = Point<ll>; const int LIM = 1'000'000'000 + 10; vc<P> A, B; vc<int> new_idx; // O から見た偏角ソート順を管理 vc<int> point; // A[i] と一致する B[j] の数え上げ vvc<int> seg; // 線分 A[i]A[j] 内にある B[k] の数え上げ vvc<int> tri; // OA[i]A[j] 内部にある B[k] の数え上げ Count_Points_In_Triangles(const vc<P>& A, const vc<P>& B) : A(A), B(B) { for (auto&& p: A) assert(max(abs(p.x), abs(p.y)) < LIM); for (auto&& p: B) assert(max(abs(p.x), abs(p.y)) < LIM); build(); } int count3(int i, int j, int k) { i = new_idx[i], j = new_idx[j], k = new_idx[k]; if (i > j) swap(i, j); if (j > k) swap(j, k); if (i > j) swap(i, j); assert(i <= j && j <= k); ll d = (A[j] - A[i]).det(A[k] - A[i]); if (d == 0) return 0; if (d > 0) { return tri[i][j] + tri[j][k] - tri[i][k] - seg[i][k]; } int x = tri[i][k] - tri[i][j] - tri[j][k]; return x - seg[i][j] - seg[j][k] - point[j]; } // segment int count2(int i, int j) { i = new_idx[i], j = new_idx[j]; if (i > j) swap(i, j); return seg[i][j]; } private: P take_origin() { // OAiAj, OAiBj が同一直線上にならないようにする // fail prob: at most N(N+M)/LIM return P{-LIM, RNG(-LIM, LIM)}; } void build() { P O = take_origin(); for (auto&& p: A) p = p - O; for (auto&& p: B) p = p - O; int N = len(A), M = len(B); vc<int> I = angle_sort(A); A = rearrange(A, I); new_idx.resize(N); FOR(i, N) new_idx[I[i]] = i; I = angle_sort(B); B = rearrange(B, I); point.assign(N, 0); seg.assign(N, vc<int>(N)); tri.assign(N, vc<int>(N)); // point FOR(i, N) FOR(j, M) if (A[i] == B[j])++ point[i]; int m = 0; FOR(j, N) { // OA[i]A[j], B[k] while (m < M && A[j].det(B[m]) < 0) ++m; vc<P> C(m); FOR(k, m) C[k] = B[k] - A[j]; vc<int> I(m); FOR(i, m) I[i] = i; sort(all(I), [&](auto& a, auto& b) -> bool { return C[a].det(C[b]) > 0; }); C = rearrange(C, I); vc<int> rk(m); FOR(k, m) rk[I[k]] = k; FenwickTree_01 bit(m); int k = m; FOR_R(i, j) { while (k > 0 && A[i].det(B[k - 1]) > 0) { bit.add(rk[--k], 1); } P p = A[i] - A[j]; int lb = binary_search([&](int n) -> bool { return (n == 0 ? true : C[n - 1].det(p) > 0); }, 0, m + 1); int ub = binary_search([&](int n) -> bool { return (n == 0 ? true : C[n - 1].det(p) >= 0); }, 0, m + 1); seg[i][j] += bit.sum(lb, ub), tri[i][j] += bit.sum(lb); } } } }; #line 7 "random/random_polygon.hpp" vc<Point<ll>> random_polygon(int N, int XY_ABS_MAX = 10) { assert(N >= 3); using P = Point<ll>; auto trial = [&]() -> vc<P> { set<Point<ll>> S; while (len(S) < N) { int x = RNG(-XY_ABS_MAX, XY_ABS_MAX + 1); int y = RNG(-XY_ABS_MAX, XY_ABS_MAX + 1); S.insert(Point<ll>(x, y)); } vc<P> point(all(S)); auto I = ConvexHull<ll, true>(point); Count_Points_In_Triangles CT(point, point); vc<int> other; vc<int> done(N); for (auto& i: I) done[i]++; if (MAX(done) >= 2) return {}; FOR(i, N) if (!done[i]) other.eb(i); int fail = 0; while (len(other)) { if (fail > 1000) return {}; ++fail; int i = RNG(0, len(I)), j = RNG(0, len(other)); swap(other[j], other.back()); int a = I[i], b = I[(i + 1) % len(I)], c = other.back(); if ((point[b] - point[a]).det(point[c] - point[a]) < 0) continue; if (CT.count3(a, b, c)) continue; if (CT.count2(a, c) + CT.count2(b, c)) continue; bool ok = 1; for (auto& v: {a, b}) { FOR(i, len(I)) { Segment<ll> S1(point[v], point[c]); Segment<ll> S2(point[I[i]], point[I[(i + 1) % len(I)]]); if (count_cross(S1, S2, false)) ok = 0; } } if (!ok) continue; fail = 0; I.insert(I.begin() + i + 1, POP(other)); } point = rearrange(point, I); FOR(i, N) { if ((point[(i + 2) % N] - point[i]).det(point[(i + 1) % N] - point[i]) == 0) return {}; } return point; }; while (1) { vc<P> ANS = trial(); if (ANS.empty()) continue; int k = RNG(0, len(ANS)); rotate(ANS.begin(), ANS.begin() + k, ANS.end()); return ANS; } }