This documentation is automatically generated by online-judge-tools/verification-helper
#include "flow/maxflow.hpp"
// incremental に辺を追加してよい
// 辺の容量の変更が可能
// 変更する capacity が F のとき、O((N+M)|F|) 時間で更新
template <typename Cap>
struct MaxFlow {
struct Edge {
int to, rev;
Cap cap; // 残っている容量. したがって cap+flow が定数.
Cap flow = 0;
};
const int N, source, sink;
vvc<Edge> edges;
vc<pair<int, int>> pos;
vc<int> prog, level;
vc<int> que;
bool calculated;
MaxFlow(int N, int source, int sink)
: N(N),
source(source),
sink(sink),
edges(N),
calculated(0),
flow_ans(0) {}
void add(int frm, int to, Cap cap, Cap rev_cap = 0) {
calculated = 0;
assert(0 <= frm && frm < N);
assert(0 <= to && to < N);
assert(Cap(0) <= cap);
int a = len(edges[frm]);
int b = (frm == to ? a + 1 : len(edges[to]));
pos.eb(frm, a);
edges[frm].eb(Edge{to, b, cap, 0});
edges[to].eb(Edge{frm, a, rev_cap, 0});
}
void change_capacity(int i, Cap after) {
auto [frm, idx] = pos[i];
auto& e = edges[frm][idx];
Cap before = e.cap + e.flow;
if (before < after) {
calculated = (e.cap > 0);
e.cap += after - before;
return;
}
e.cap = after - e.flow;
// 差分を押し戻す処理発生
if (e.cap < 0) flow_push_back(e);
}
void flow_push_back(Edge& e0) {
auto& re0 = edges[e0.to][e0.rev];
int a = re0.to;
int b = e0.to;
/*
辺 e0 の容量が正になるように戻す
path-cycle 分解を考えれば、
- uv 辺を含むサイクルを消す
- suvt パスを消す
前者は残余グラフで ab パス(flow_ans が変わらない)
後者は残余グラフで tb, as パス
*/
auto find_path = [&](int s, int t, Cap lim) -> Cap {
vc<bool> vis(N);
prog.assign(N, 0);
auto dfs = [&](auto& dfs, int v, Cap f) -> Cap {
if (v == t) return f;
for (int& i = prog[v]; i < len(edges[v]); ++i) {
auto& e = edges[v][i];
if (vis[e.to] || e.cap <= Cap(0)) continue;
vis[e.to] = 1;
Cap a = dfs(dfs, e.to, min(f, e.cap));
assert(a >= 0);
if (a == Cap(0)) continue;
e.cap -= a, e.flow += a;
edges[e.to][e.rev].cap += a, edges[e.to][e.rev].flow -= a;
return a;
}
return 0;
};
return dfs(dfs, s, lim);
};
while (e0.cap < 0) {
Cap x = find_path(a, b, -e0.cap);
if (x == Cap(0)) break;
e0.cap += x, e0.flow -= x;
re0.cap -= x, re0.flow += x;
}
Cap c = -e0.cap;
while (c > 0 && a != source) {
Cap x = find_path(a, source, c);
assert(x > 0);
c -= x;
}
c = -e0.cap;
while (c > 0 && b != sink) {
Cap x = find_path(sink, b, c);
assert(x > 0);
c -= x;
}
c = -e0.cap;
e0.cap += c, e0.flow -= c;
re0.cap -= c, re0.flow += c;
flow_ans -= c;
}
// frm, to, flow
vc<tuple<int, int, Cap>> get_flow_edges() {
vc<tuple<int, int, Cap>> res;
FOR(frm, N) {
for (auto&& e: edges[frm]) {
if (e.flow <= 0) continue;
res.eb(frm, e.to, e.flow);
}
}
return res;
}
vc<bool> vis;
// 差分ではなくこれまでの総量
Cap flow() {
if (calculated) return flow_ans;
calculated = true;
while (set_level()) {
prog.assign(N, 0);
while (1) {
Cap x = flow_dfs(source, infty<Cap>);
if (x == 0) break;
flow_ans += x;
chmin(flow_ans, infty<Cap>);
if (flow_ans == infty<Cap>) return flow_ans;
}
}
return flow_ans;
}
// 最小カットの値および、カットを表す 01 列を返す
pair<Cap, vc<int>> cut() {
flow();
vc<int> res(N);
FOR(v, N) res[v] = (level[v] >= 0 ? 0 : 1);
return {flow_ans, res};
}
// O(F(N+M)) くらい使って経路復元
// simple path になる
vvc<int> path_decomposition() {
flow();
auto edges = get_flow_edges();
vvc<int> TO(N);
for (auto&& [frm, to, flow]: edges) { FOR(flow) TO[frm].eb(to); }
vvc<int> res;
vc<int> vis(N);
FOR(flow_ans) {
vc<int> path = {source};
vis[source] = 1;
while (path.back() != sink) {
int to = POP(TO[path.back()]);
while (vis[to]) { vis[POP(path)] = 0; }
path.eb(to), vis[to] = 1;
}
for (auto&& v: path) vis[v] = 0;
res.eb(path);
}
return res;
}
void debug() {
print("source", source);
print("sink", sink);
print("edges (frm, to, cap, flow)");
FOR(v, N) {
for (auto& e: edges[v]) {
if (e.cap == 0 && e.flow == 0) continue;
print(v, e.to, e.cap, e.flow);
}
}
}
private:
Cap flow_ans;
bool set_level() {
que.resize(N);
level.assign(N, -1);
level[source] = 0;
int l = 0, r = 0;
que[r++] = source;
while (l < r) {
int v = que[l++];
for (auto&& e: edges[v]) {
if (e.cap > 0 && level[e.to] == -1) {
level[e.to] = level[v] + 1;
if (e.to == sink) return true;
que[r++] = e.to;
}
}
}
return false;
}
Cap flow_dfs(int v, Cap lim) {
if (v == sink) return lim;
Cap res = 0;
for (int& i = prog[v]; i < len(edges[v]); ++i) {
auto& e = edges[v][i];
if (e.cap > 0 && level[e.to] == level[v] + 1) {
Cap a = flow_dfs(e.to, min(lim, e.cap));
if (a > 0) {
e.cap -= a, e.flow += a;
edges[e.to][e.rev].cap += a, edges[e.to][e.rev].flow -= a;
res += a;
lim -= a;
if (lim == 0) break;
}
}
}
return res;
}
};
#line 1 "flow/maxflow.hpp"
// incremental に辺を追加してよい
// 辺の容量の変更が可能
// 変更する capacity が F のとき、O((N+M)|F|) 時間で更新
template <typename Cap>
struct MaxFlow {
struct Edge {
int to, rev;
Cap cap; // 残っている容量. したがって cap+flow が定数.
Cap flow = 0;
};
const int N, source, sink;
vvc<Edge> edges;
vc<pair<int, int>> pos;
vc<int> prog, level;
vc<int> que;
bool calculated;
MaxFlow(int N, int source, int sink)
: N(N),
source(source),
sink(sink),
edges(N),
calculated(0),
flow_ans(0) {}
void add(int frm, int to, Cap cap, Cap rev_cap = 0) {
calculated = 0;
assert(0 <= frm && frm < N);
assert(0 <= to && to < N);
assert(Cap(0) <= cap);
int a = len(edges[frm]);
int b = (frm == to ? a + 1 : len(edges[to]));
pos.eb(frm, a);
edges[frm].eb(Edge{to, b, cap, 0});
edges[to].eb(Edge{frm, a, rev_cap, 0});
}
void change_capacity(int i, Cap after) {
auto [frm, idx] = pos[i];
auto& e = edges[frm][idx];
Cap before = e.cap + e.flow;
if (before < after) {
calculated = (e.cap > 0);
e.cap += after - before;
return;
}
e.cap = after - e.flow;
// 差分を押し戻す処理発生
if (e.cap < 0) flow_push_back(e);
}
void flow_push_back(Edge& e0) {
auto& re0 = edges[e0.to][e0.rev];
int a = re0.to;
int b = e0.to;
/*
辺 e0 の容量が正になるように戻す
path-cycle 分解を考えれば、
- uv 辺を含むサイクルを消す
- suvt パスを消す
前者は残余グラフで ab パス(flow_ans が変わらない)
後者は残余グラフで tb, as パス
*/
auto find_path = [&](int s, int t, Cap lim) -> Cap {
vc<bool> vis(N);
prog.assign(N, 0);
auto dfs = [&](auto& dfs, int v, Cap f) -> Cap {
if (v == t) return f;
for (int& i = prog[v]; i < len(edges[v]); ++i) {
auto& e = edges[v][i];
if (vis[e.to] || e.cap <= Cap(0)) continue;
vis[e.to] = 1;
Cap a = dfs(dfs, e.to, min(f, e.cap));
assert(a >= 0);
if (a == Cap(0)) continue;
e.cap -= a, e.flow += a;
edges[e.to][e.rev].cap += a, edges[e.to][e.rev].flow -= a;
return a;
}
return 0;
};
return dfs(dfs, s, lim);
};
while (e0.cap < 0) {
Cap x = find_path(a, b, -e0.cap);
if (x == Cap(0)) break;
e0.cap += x, e0.flow -= x;
re0.cap -= x, re0.flow += x;
}
Cap c = -e0.cap;
while (c > 0 && a != source) {
Cap x = find_path(a, source, c);
assert(x > 0);
c -= x;
}
c = -e0.cap;
while (c > 0 && b != sink) {
Cap x = find_path(sink, b, c);
assert(x > 0);
c -= x;
}
c = -e0.cap;
e0.cap += c, e0.flow -= c;
re0.cap -= c, re0.flow += c;
flow_ans -= c;
}
// frm, to, flow
vc<tuple<int, int, Cap>> get_flow_edges() {
vc<tuple<int, int, Cap>> res;
FOR(frm, N) {
for (auto&& e: edges[frm]) {
if (e.flow <= 0) continue;
res.eb(frm, e.to, e.flow);
}
}
return res;
}
vc<bool> vis;
// 差分ではなくこれまでの総量
Cap flow() {
if (calculated) return flow_ans;
calculated = true;
while (set_level()) {
prog.assign(N, 0);
while (1) {
Cap x = flow_dfs(source, infty<Cap>);
if (x == 0) break;
flow_ans += x;
chmin(flow_ans, infty<Cap>);
if (flow_ans == infty<Cap>) return flow_ans;
}
}
return flow_ans;
}
// 最小カットの値および、カットを表す 01 列を返す
pair<Cap, vc<int>> cut() {
flow();
vc<int> res(N);
FOR(v, N) res[v] = (level[v] >= 0 ? 0 : 1);
return {flow_ans, res};
}
// O(F(N+M)) くらい使って経路復元
// simple path になる
vvc<int> path_decomposition() {
flow();
auto edges = get_flow_edges();
vvc<int> TO(N);
for (auto&& [frm, to, flow]: edges) { FOR(flow) TO[frm].eb(to); }
vvc<int> res;
vc<int> vis(N);
FOR(flow_ans) {
vc<int> path = {source};
vis[source] = 1;
while (path.back() != sink) {
int to = POP(TO[path.back()]);
while (vis[to]) { vis[POP(path)] = 0; }
path.eb(to), vis[to] = 1;
}
for (auto&& v: path) vis[v] = 0;
res.eb(path);
}
return res;
}
void debug() {
print("source", source);
print("sink", sink);
print("edges (frm, to, cap, flow)");
FOR(v, N) {
for (auto& e: edges[v]) {
if (e.cap == 0 && e.flow == 0) continue;
print(v, e.to, e.cap, e.flow);
}
}
}
private:
Cap flow_ans;
bool set_level() {
que.resize(N);
level.assign(N, -1);
level[source] = 0;
int l = 0, r = 0;
que[r++] = source;
while (l < r) {
int v = que[l++];
for (auto&& e: edges[v]) {
if (e.cap > 0 && level[e.to] == -1) {
level[e.to] = level[v] + 1;
if (e.to == sink) return true;
que[r++] = e.to;
}
}
}
return false;
}
Cap flow_dfs(int v, Cap lim) {
if (v == sink) return lim;
Cap res = 0;
for (int& i = prog[v]; i < len(edges[v]); ++i) {
auto& e = edges[v][i];
if (e.cap > 0 && level[e.to] == level[v] + 1) {
Cap a = flow_dfs(e.to, min(lim, e.cap));
if (a > 0) {
e.cap -= a, e.flow += a;
edges[e.to][e.rev].cap += a, edges[e.to][e.rev].flow -= a;
res += a;
lim -= a;
if (lim == 0) break;
}
}
}
return res;
}
};