This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub maspypy/library
#include "game/graph_path_game.hpp"
#include "graph/bipartite_vertex_coloring.hpp" #include "flow/maxflow.hpp" #include "graph/reverse_graph.hpp" // グラフがある. 頂点 v は A[v] 回まで使える(多重頂点) // winning position の列をかえす. それを含まない最大マッチングがああるということ // https://qoj.ac/contest/1576/problem/8507 vc<int> graph_path_game(Graph<int, 0> G, vc<int> A) { // 二部だけ auto color = bipartite_vertex_coloring(G); assert(!color.empty()); int N = G.N; int s = N, t = N + 1; MaxFlow<int> F(N + 2, s, t); FOR(v, N) { if (color[v] == 0) F.add(s, v, A[v]); if (color[v] == 1) F.add(v, t, A[v]); } for (auto& e: G.edges) { int a = e.frm, b = e.to; if (color[a] == 1) swap(a, b); F.add(a, b, infty<int>); } F.flow(); // 残余グラフで s から到達可能な左側の点 // t へ到達可能な右側の点 Graph<int, 1> H(N + 2); FOR(v, N + 2) { for (auto& e: F.edges[v]) { if (e.cap > 0) H.add(v, e.to); } } H.build(); auto reach = [&](int v) -> vc<int> { vc<bool> vis(N + 2); vc<int> que; que.eb(v), vis[v] = 1; FOR(i, len(que)) { int v = que[i]; for (auto& e: H[v]) { if (!vis[e.to]) vis[e.to] = 1, que.eb(e.to); } } return que; }; vc<int> ANS; for (auto& v: reach(s)) { if (v < N && color[v] == 0) ANS.eb(v); } H = reverse_graph(H); for (auto& v: reach(t)) { if (v < N && color[v] == 1) ANS.eb(v); } return ANS; }
#line 2 "graph/bipartite_vertex_coloring.hpp" #line 2 "graph/base.hpp" template <typename T> struct Edge { int frm, to; T cost; int id; }; template <typename T = int, bool directed = false> struct Graph { static constexpr bool is_directed = directed; int N, M; using cost_type = T; using edge_type = Edge<T>; vector<edge_type> edges; vector<int> indptr; vector<edge_type> csr_edges; vc<int> vc_deg, vc_indeg, vc_outdeg; bool prepared; class OutgoingEdges { public: OutgoingEdges(const Graph* G, int l, int r) : G(G), l(l), r(r) {} const edge_type* begin() const { if (l == r) { return 0; } return &G->csr_edges[l]; } const edge_type* end() const { if (l == r) { return 0; } return &G->csr_edges[r]; } private: const Graph* G; int l, r; }; bool is_prepared() { return prepared; } Graph() : N(0), M(0), prepared(0) {} Graph(int N) : N(N), M(0), prepared(0) {} void build(int n) { N = n, M = 0; prepared = 0; edges.clear(); indptr.clear(); csr_edges.clear(); vc_deg.clear(); vc_indeg.clear(); vc_outdeg.clear(); } void add(int frm, int to, T cost = 1, int i = -1) { assert(!prepared); assert(0 <= frm && 0 <= to && to < N); if (i == -1) i = M; auto e = edge_type({frm, to, cost, i}); edges.eb(e); ++M; } #ifdef FASTIO // wt, off void read_tree(bool wt = false, int off = 1) { read_graph(N - 1, wt, off); } void read_graph(int M, bool wt = false, int off = 1) { for (int m = 0; m < M; ++m) { INT(a, b); a -= off, b -= off; if (!wt) { add(a, b); } else { T c; read(c); add(a, b, c); } } build(); } #endif void build() { assert(!prepared); prepared = true; indptr.assign(N + 1, 0); for (auto&& e: edges) { indptr[e.frm + 1]++; if (!directed) indptr[e.to + 1]++; } for (int v = 0; v < N; ++v) { indptr[v + 1] += indptr[v]; } auto counter = indptr; csr_edges.resize(indptr.back() + 1); for (auto&& e: edges) { csr_edges[counter[e.frm]++] = e; if (!directed) csr_edges[counter[e.to]++] = edge_type({e.to, e.frm, e.cost, e.id}); } } OutgoingEdges operator[](int v) const { assert(prepared); return {this, indptr[v], indptr[v + 1]}; } vc<int> deg_array() { if (vc_deg.empty()) calc_deg(); return vc_deg; } pair<vc<int>, vc<int>> deg_array_inout() { if (vc_indeg.empty()) calc_deg_inout(); return {vc_indeg, vc_outdeg}; } int deg(int v) { if (vc_deg.empty()) calc_deg(); return vc_deg[v]; } int in_deg(int v) { if (vc_indeg.empty()) calc_deg_inout(); return vc_indeg[v]; } int out_deg(int v) { if (vc_outdeg.empty()) calc_deg_inout(); return vc_outdeg[v]; } #ifdef FASTIO void debug() { print("Graph"); if (!prepared) { print("frm to cost id"); for (auto&& e: edges) print(e.frm, e.to, e.cost, e.id); } else { print("indptr", indptr); print("frm to cost id"); FOR(v, N) for (auto&& e: (*this)[v]) print(e.frm, e.to, e.cost, e.id); } } #endif vc<int> new_idx; vc<bool> used_e; // G における頂点 V[i] が、新しいグラフで i になるようにする // {G, es} // sum(deg(v)) の計算量になっていて、 // 新しいグラフの n+m より大きい可能性があるので注意 Graph<T, directed> rearrange(vc<int> V, bool keep_eid = 0) { if (len(new_idx) != N) new_idx.assign(N, -1); int n = len(V); FOR(i, n) new_idx[V[i]] = i; Graph<T, directed> G(n); vc<int> history; FOR(i, n) { for (auto&& e: (*this)[V[i]]) { if (len(used_e) <= e.id) used_e.resize(e.id + 1); if (used_e[e.id]) continue; int a = e.frm, b = e.to; if (new_idx[a] != -1 && new_idx[b] != -1) { history.eb(e.id); used_e[e.id] = 1; int eid = (keep_eid ? e.id : -1); G.add(new_idx[a], new_idx[b], e.cost, eid); } } } FOR(i, n) new_idx[V[i]] = -1; for (auto&& eid: history) used_e[eid] = 0; G.build(); return G; } Graph<T, true> to_directed_tree(int root = -1) { if (root == -1) root = 0; assert(!is_directed && prepared && M == N - 1); Graph<T, true> G1(N); vc<int> par(N, -1); auto dfs = [&](auto& dfs, int v) -> void { for (auto& e: (*this)[v]) { if (e.to == par[v]) continue; par[e.to] = v, dfs(dfs, e.to); } }; dfs(dfs, root); for (auto& e: edges) { int a = e.frm, b = e.to; if (par[a] == b) swap(a, b); assert(par[b] == a); G1.add(a, b, e.cost); } G1.build(); return G1; } private: void calc_deg() { assert(vc_deg.empty()); vc_deg.resize(N); for (auto&& e: edges) vc_deg[e.frm]++, vc_deg[e.to]++; } void calc_deg_inout() { assert(vc_indeg.empty()); vc_indeg.resize(N); vc_outdeg.resize(N); for (auto&& e: edges) { vc_indeg[e.to]++, vc_outdeg[e.frm]++; } } }; #line 2 "ds/unionfind/unionfind.hpp" struct UnionFind { int n, n_comp; vc<int> dat; // par or (-size) UnionFind(int n = 0) { build(n); } void build(int m) { n = m, n_comp = m; dat.assign(n, -1); } void reset() { build(n); } int operator[](int x) { while (dat[x] >= 0) { int pp = dat[dat[x]]; if (pp < 0) { return dat[x]; } x = dat[x] = pp; } return x; } ll size(int x) { x = (*this)[x]; return -dat[x]; } bool merge(int x, int y) { x = (*this)[x], y = (*this)[y]; if (x == y) return false; if (-dat[x] < -dat[y]) swap(x, y); dat[x] += dat[y], dat[y] = x, n_comp--; return true; } vc<int> get_all() { vc<int> A(n); FOR(i, n) A[i] = (*this)[i]; return A; } }; #line 5 "graph/bipartite_vertex_coloring.hpp" // 二部グラフでなかった場合には empty template <typename GT> vc<int> bipartite_vertex_coloring(GT& G) { assert(!GT::is_directed); assert(G.is_prepared()); int n = G.N; UnionFind uf(2 * n); for (auto&& e: G.edges) { int u = e.frm, v = e.to; uf.merge(u + n, v), uf.merge(u, v + n); } vc<int> color(2 * n, -1); FOR(v, n) if (uf[v] == v && color[uf[v]] < 0) { color[uf[v]] = 0; color[uf[v + n]] = 1; } FOR(v, n) color[v] = color[uf[v]]; color.resize(n); FOR(v, n) if (uf[v] == uf[v + n]) return {}; return color; } #line 1 "flow/maxflow.hpp" // incremental に辺を追加してよい // 辺の容量の変更が可能 // 変更する capacity が F のとき、O((N+M)|F|) 時間で更新 template <typename Cap> struct MaxFlow { struct Edge { int to, rev; Cap cap; // 残っている容量. したがって cap+flow が定数. Cap flow = 0; }; const int N, source, sink; vvc<Edge> edges; vc<pair<int, int>> pos; vc<int> prog, level; vc<int> que; bool calculated; MaxFlow(int N, int source, int sink) : N(N), source(source), sink(sink), edges(N), calculated(0), flow_ans(0) {} void add(int frm, int to, Cap cap, Cap rev_cap = 0) { calculated = 0; assert(0 <= frm && frm < N); assert(0 <= to && to < N); assert(Cap(0) <= cap); int a = len(edges[frm]); int b = (frm == to ? a + 1 : len(edges[to])); pos.eb(frm, a); edges[frm].eb(Edge{to, b, cap, 0}); edges[to].eb(Edge{frm, a, rev_cap, 0}); } void change_capacity(int i, Cap after) { auto [frm, idx] = pos[i]; auto& e = edges[frm][idx]; Cap before = e.cap + e.flow; if (before < after) { calculated = (e.cap > 0); e.cap += after - before; return; } e.cap = after - e.flow; // 差分を押し戻す処理発生 if (e.cap < 0) flow_push_back(e); } void flow_push_back(Edge& e0) { auto& re0 = edges[e0.to][e0.rev]; int a = re0.to; int b = e0.to; /* 辺 e0 の容量が正になるように戻す path-cycle 分解を考えれば、 - uv 辺を含むサイクルを消す - suvt パスを消す 前者は残余グラフで ab パス(flow_ans が変わらない) 後者は残余グラフで tb, as パス */ auto find_path = [&](int s, int t, Cap lim) -> Cap { vc<bool> vis(N); prog.assign(N, 0); auto dfs = [&](auto& dfs, int v, Cap f) -> Cap { if (v == t) return f; for (int& i = prog[v]; i < len(edges[v]); ++i) { auto& e = edges[v][i]; if (vis[e.to] || e.cap <= Cap(0)) continue; vis[e.to] = 1; Cap a = dfs(dfs, e.to, min(f, e.cap)); assert(a >= 0); if (a == Cap(0)) continue; e.cap -= a, e.flow += a; edges[e.to][e.rev].cap += a, edges[e.to][e.rev].flow -= a; return a; } return 0; }; return dfs(dfs, s, lim); }; while (e0.cap < 0) { Cap x = find_path(a, b, -e0.cap); if (x == Cap(0)) break; e0.cap += x, e0.flow -= x; re0.cap -= x, re0.flow += x; } Cap c = -e0.cap; while (c > 0 && a != source) { Cap x = find_path(a, source, c); assert(x > 0); c -= x; } c = -e0.cap; while (c > 0 && b != sink) { Cap x = find_path(sink, b, c); assert(x > 0); c -= x; } c = -e0.cap; e0.cap += c, e0.flow -= c; re0.cap -= c, re0.flow += c; flow_ans -= c; } // frm, to, flow vc<tuple<int, int, Cap>> get_flow_edges() { vc<tuple<int, int, Cap>> res; FOR(frm, N) { for (auto&& e: edges[frm]) { if (e.flow <= 0) continue; res.eb(frm, e.to, e.flow); } } return res; } vc<bool> vis; // 差分ではなくこれまでの総量 Cap flow() { if (calculated) return flow_ans; calculated = true; while (set_level()) { prog.assign(N, 0); while (1) { Cap x = flow_dfs(source, infty<Cap>); if (x == 0) break; flow_ans += x; chmin(flow_ans, infty<Cap>); if (flow_ans == infty<Cap>) return flow_ans; } } return flow_ans; } // 最小カットの値および、カットを表す 01 列を返す pair<Cap, vc<int>> cut() { flow(); vc<int> res(N); FOR(v, N) res[v] = (level[v] >= 0 ? 0 : 1); return {flow_ans, res}; } // O(F(N+M)) くらい使って経路復元 // simple path になる vvc<int> path_decomposition() { flow(); auto edges = get_flow_edges(); vvc<int> TO(N); for (auto&& [frm, to, flow]: edges) { FOR(flow) TO[frm].eb(to); } vvc<int> res; vc<int> vis(N); FOR(flow_ans) { vc<int> path = {source}; vis[source] = 1; while (path.back() != sink) { int to = POP(TO[path.back()]); while (vis[to]) { vis[POP(path)] = 0; } path.eb(to), vis[to] = 1; } for (auto&& v: path) vis[v] = 0; res.eb(path); } return res; } void debug() { print("source", source); print("sink", sink); print("edges (frm, to, cap, flow)"); FOR(v, N) { for (auto& e: edges[v]) { if (e.cap == 0 && e.flow == 0) continue; print(v, e.to, e.cap, e.flow); } } } private: Cap flow_ans; bool set_level() { que.resize(N); level.assign(N, -1); level[source] = 0; int l = 0, r = 0; que[r++] = source; while (l < r) { int v = que[l++]; for (auto&& e: edges[v]) { if (e.cap > 0 && level[e.to] == -1) { level[e.to] = level[v] + 1; if (e.to == sink) return true; que[r++] = e.to; } } } return false; } Cap flow_dfs(int v, Cap lim) { if (v == sink) return lim; Cap res = 0; for (int& i = prog[v]; i < len(edges[v]); ++i) { auto& e = edges[v][i]; if (e.cap > 0 && level[e.to] == level[v] + 1) { Cap a = flow_dfs(e.to, min(lim, e.cap)); if (a > 0) { e.cap -= a, e.flow += a; edges[e.to][e.rev].cap += a, edges[e.to][e.rev].flow -= a; res += a; lim -= a; if (lim == 0) break; } } } return res; } }; #line 2 "graph/reverse_graph.hpp" template <typename GT> GT reverse_graph(GT& G) { static_assert(GT::is_directed); GT G1(G.N); for (auto&& e: G.edges) { G1.add(e.to, e.frm, e.cost, e.id); } G1.build(); return G1; } #line 4 "game/graph_path_game.hpp" // グラフがある. 頂点 v は A[v] 回まで使える(多重頂点) // winning position の列をかえす. それを含まない最大マッチングがああるということ // https://qoj.ac/contest/1576/problem/8507 vc<int> graph_path_game(Graph<int, 0> G, vc<int> A) { // 二部だけ auto color = bipartite_vertex_coloring(G); assert(!color.empty()); int N = G.N; int s = N, t = N + 1; MaxFlow<int> F(N + 2, s, t); FOR(v, N) { if (color[v] == 0) F.add(s, v, A[v]); if (color[v] == 1) F.add(v, t, A[v]); } for (auto& e: G.edges) { int a = e.frm, b = e.to; if (color[a] == 1) swap(a, b); F.add(a, b, infty<int>); } F.flow(); // 残余グラフで s から到達可能な左側の点 // t へ到達可能な右側の点 Graph<int, 1> H(N + 2); FOR(v, N + 2) { for (auto& e: F.edges[v]) { if (e.cap > 0) H.add(v, e.to); } } H.build(); auto reach = [&](int v) -> vc<int> { vc<bool> vis(N + 2); vc<int> que; que.eb(v), vis[v] = 1; FOR(i, len(que)) { int v = que[i]; for (auto& e: H[v]) { if (!vis[e.to]) vis[e.to] = 1, que.eb(e.to); } } return que; }; vc<int> ANS; for (auto& v: reach(s)) { if (v < N && color[v] == 0) ANS.eb(v); } H = reverse_graph(H); for (auto& v: reach(t)) { if (v < N && color[v] == 1) ANS.eb(v); } return ANS; }