This documentation is automatically generated by online-judge-tools/verification-helper
#include "ds/randomized_bst/rbst_monoid.hpp"
template <typename Monoid, bool PERSISTENT>
struct RBST_Monoid {
using X = typename Monoid::value_type;
struct Node {
Node *l, *r;
X x, prod, rev_prod; // rev 反映済
u32 size;
bool rev;
};
int NODES;
Node *pool;
int pid;
using np = Node *;
RBST_Monoid(int NODES) : NODES(NODES), pid(0) { pool = new Node[NODES]; }
~RBST_Monoid() { delete[] pool; }
void reset() { pid = 0; }
np new_node(const X &x) {
pool[pid].l = pool[pid].r = nullptr;
pool[pid].x = x;
pool[pid].prod = x;
pool[pid].rev_prod = x;
pool[pid].size = 1;
pool[pid].rev = 0;
return &(pool[pid++]);
}
np new_node(const vc<X> &dat) {
auto dfs = [&](auto &dfs, u32 l, u32 r) -> np {
if (l == r) return nullptr;
if (r == l + 1) return new_node(dat[l]);
u32 m = (l + r) / 2;
np l_root = dfs(dfs, l, m);
np r_root = dfs(dfs, m + 1, r);
np root = new_node(dat[m]);
root->l = l_root, root->r = r_root;
update(root);
return root;
};
return dfs(dfs, 0, len(dat));
}
np copy_node(np &n) {
if (!n || !PERSISTENT) return n;
pool[pid].l = n->l, pool[pid].r = n->r;
pool[pid].x = n->x;
pool[pid].prod = n->prod;
pool[pid].rev_prod = n->rev_prod;
pool[pid].size = n->size;
pool[pid].rev = n->rev;
return &(pool[pid++]);
}
np merge(np l_root, np r_root) { return merge_rec(l_root, r_root); }
np merge3(np a, np b, np c) { return merge(merge(a, b), c); }
np merge4(np a, np b, np c, np d) { return merge(merge(merge(a, b), c), d); }
pair<np, np> split(np root, u32 k) {
if (!root) {
assert(k == 0);
return {nullptr, nullptr};
}
assert(0 <= k && k <= root->size);
return split_rec(root, k);
}
tuple<np, np, np> split3(np root, u32 l, u32 r) {
np nm, nr;
tie(root, nr) = split(root, r);
tie(root, nm) = split(root, l);
return {root, nm, nr};
}
tuple<np, np, np, np> split4(np root, u32 i, u32 j, u32 k) {
np d;
tie(root, d) = split(root, k);
auto [a, b, c] = split3(root, i, j);
return {a, b, c, d};
}
X prod(np root, u32 l, u32 r) {
if (l == r) return Monoid::unit();
return prod_rec(root, l, r, false);
}
X prod(np root) { return (root ? root->prod : Monoid::unit()); }
np reverse(np root, u32 l, u32 r) {
assert(0 <= l && l <= r && r <= root->size);
if (r - l <= 1) return root;
auto [nl, nm, nr] = split3(root, l, r);
nm->rev ^= 1;
swap(nm->l, nm->r);
swap(nm->prod, nm->rev_prod);
return merge3(nl, nm, nr);
}
np set(np root, u32 k, const X &x) { return set_rec(root, k, x); }
np multiply(np root, u32 k, const X &x) { return multiply_rec(root, k, x); }
X get(np root, u32 k) { return get_rec(root, k, false); }
vc<X> get_all(np root) {
vc<X> res;
auto dfs = [&](auto &dfs, np root, bool rev) -> void {
if (!root) return;
dfs(dfs, (rev ? root->r : root->l), rev ^ root->rev);
res.eb(root->x);
dfs(dfs, (rev ? root->l : root->r), rev ^ root->rev);
};
dfs(dfs, root, 0);
return res;
}
template <typename F>
pair<np, np> split_max_right(np root, const F check) {
assert(check(Monoid::unit()));
X x = Monoid::unit();
return split_max_right_rec(root, check, x);
}
private:
inline u32 xor128() {
static u32 x = 123456789;
static u32 y = 362436069;
static u32 z = 521288629;
static u32 w = 88675123;
u32 t = x ^ (x << 11);
x = y;
y = z;
z = w;
return w = (w ^ (w >> 19)) ^ (t ^ (t >> 8));
}
void prop(np c) {
// 自身をコピーする必要はない。
// 子をコピーする必要がある。複数の親を持つ可能性があるため。
if (c->rev) {
if (c->l) {
c->l = copy_node(c->l);
c->l->rev ^= 1;
swap(c->l->l, c->l->r);
swap(c->l->prod, c->l->rev_prod);
}
if (c->r) {
c->r = copy_node(c->r);
c->r->rev ^= 1;
swap(c->r->l, c->r->r);
swap(c->r->prod, c->r->rev_prod);
}
c->rev = 0;
}
}
void update(np c) {
// データを保ったまま正常化するだけなので、コピー不要
c->size = 1;
c->prod = c->rev_prod = c->x;
if (c->l) {
c->size += c->l->size;
c->prod = Monoid::op(c->l->prod, c->prod);
c->rev_prod = Monoid::op(c->rev_prod, c->l->rev_prod);
}
if (c->r) {
c->size += c->r->size;
c->prod = Monoid::op(c->prod, c->r->prod);
c->rev_prod = Monoid::op(c->r->rev_prod, c->rev_prod);
}
}
np merge_rec(np l_root, np r_root) {
if (!l_root) return r_root;
if (!r_root) return l_root;
u32 sl = l_root->size, sr = r_root->size;
if (xor128() % (sl + sr) < sl) {
prop(l_root);
l_root = copy_node(l_root);
l_root->r = merge_rec(l_root->r, r_root);
update(l_root);
return l_root;
}
prop(r_root);
r_root = copy_node(r_root);
r_root->l = merge_rec(l_root, r_root->l);
update(r_root);
return r_root;
}
pair<np, np> split_rec(np root, u32 k) {
if (!root) return {nullptr, nullptr};
prop(root);
u32 sl = (root->l ? root->l->size : 0);
if (k <= sl) {
auto [nl, nr] = split_rec(root->l, k);
root = copy_node(root);
root->l = nr;
update(root);
return {nl, root};
}
auto [nl, nr] = split_rec(root->r, k - (1 + sl));
root = copy_node(root);
root->r = nl;
update(root);
return {root, nr};
}
np set_rec(np root, u32 k, const X &x) {
if (!root) return root;
prop(root);
u32 sl = (root->l ? root->l->size : 0);
if (k < sl) {
root = copy_node(root);
root->l = set_rec(root->l, k, x);
update(root);
return root;
}
if (k == sl) {
root = copy_node(root);
root->x = x;
update(root);
return root;
}
root = copy_node(root);
root->r = set_rec(root->r, k - (1 + sl), x);
update(root);
return root;
}
np multiply_rec(np root, u32 k, const X &x) {
if (!root) return root;
prop(root);
u32 sl = (root->l ? root->l->size : 0);
if (k < sl) {
root = copy_node(root);
root->l = multiply_rec(root->l, k, x);
update(root);
return root;
}
if (k == sl) {
root = copy_node(root);
root->x = Monoid::op(root->x, x);
update(root);
return root;
}
root = copy_node(root);
root->r = multiply_rec(root->r, k - (1 + sl), x);
update(root);
return root;
}
X prod_rec(np root, u32 l, u32 r, bool rev) {
if (l == 0 && r == root->size) { return (rev ? root->rev_prod : root->prod); }
np left = (rev ? root->r : root->l);
np right = (rev ? root->l : root->r);
u32 sl = (left ? left->size : 0);
X res = Monoid::unit();
if (l < sl) {
X y = prod_rec(left, l, min(r, sl), rev ^ root->rev);
res = Monoid::op(res, y);
}
if (l <= sl && sl < r) res = Monoid::op(res, root->x);
u32 k = 1 + sl;
if (k < r) {
X y = prod_rec(right, max(k, l) - k, r - k, rev ^ root->rev);
res = Monoid::op(res, y);
}
return res;
}
X get_rec(np root, u32 k, bool rev) {
np left = (rev ? root->r : root->l);
np right = (rev ? root->l : root->r);
u32 sl = (left ? left->size : 0);
if (k == sl) return root->x;
rev ^= root->rev;
if (k < sl) return get_rec(left, k, rev);
return get_rec(right, k - (1 + sl), rev);
}
template <typename F>
pair<np, np> split_max_right_rec(np root, const F &check, X &x) {
if (!root) return {nullptr, nullptr};
prop(root);
root = copy_node(root);
X y = Monoid::op(x, root->prod);
if (check(y)) {
x = y;
return {root, nullptr};
}
np left = root->l, right = root->r;
if (left) {
X y = Monoid::op(x, root->l->prod);
if (!check(y)) {
auto [n1, n2] = split_max_right_rec(left, check, x);
root->l = n2;
update(root);
return {n1, root};
}
x = y;
}
y = Monoid::op(x, root->x);
if (!check(y)) {
root->l = nullptr;
update(root);
return {left, root};
}
x = y;
auto [n1, n2] = split_max_right_rec(right, check, x);
root->r = n1;
update(root);
return {root, n2};
}
};
#line 1 "ds/randomized_bst/rbst_monoid.hpp"
template <typename Monoid, bool PERSISTENT>
struct RBST_Monoid {
using X = typename Monoid::value_type;
struct Node {
Node *l, *r;
X x, prod, rev_prod; // rev 反映済
u32 size;
bool rev;
};
int NODES;
Node *pool;
int pid;
using np = Node *;
RBST_Monoid(int NODES) : NODES(NODES), pid(0) { pool = new Node[NODES]; }
~RBST_Monoid() { delete[] pool; }
void reset() { pid = 0; }
np new_node(const X &x) {
pool[pid].l = pool[pid].r = nullptr;
pool[pid].x = x;
pool[pid].prod = x;
pool[pid].rev_prod = x;
pool[pid].size = 1;
pool[pid].rev = 0;
return &(pool[pid++]);
}
np new_node(const vc<X> &dat) {
auto dfs = [&](auto &dfs, u32 l, u32 r) -> np {
if (l == r) return nullptr;
if (r == l + 1) return new_node(dat[l]);
u32 m = (l + r) / 2;
np l_root = dfs(dfs, l, m);
np r_root = dfs(dfs, m + 1, r);
np root = new_node(dat[m]);
root->l = l_root, root->r = r_root;
update(root);
return root;
};
return dfs(dfs, 0, len(dat));
}
np copy_node(np &n) {
if (!n || !PERSISTENT) return n;
pool[pid].l = n->l, pool[pid].r = n->r;
pool[pid].x = n->x;
pool[pid].prod = n->prod;
pool[pid].rev_prod = n->rev_prod;
pool[pid].size = n->size;
pool[pid].rev = n->rev;
return &(pool[pid++]);
}
np merge(np l_root, np r_root) { return merge_rec(l_root, r_root); }
np merge3(np a, np b, np c) { return merge(merge(a, b), c); }
np merge4(np a, np b, np c, np d) { return merge(merge(merge(a, b), c), d); }
pair<np, np> split(np root, u32 k) {
if (!root) {
assert(k == 0);
return {nullptr, nullptr};
}
assert(0 <= k && k <= root->size);
return split_rec(root, k);
}
tuple<np, np, np> split3(np root, u32 l, u32 r) {
np nm, nr;
tie(root, nr) = split(root, r);
tie(root, nm) = split(root, l);
return {root, nm, nr};
}
tuple<np, np, np, np> split4(np root, u32 i, u32 j, u32 k) {
np d;
tie(root, d) = split(root, k);
auto [a, b, c] = split3(root, i, j);
return {a, b, c, d};
}
X prod(np root, u32 l, u32 r) {
if (l == r) return Monoid::unit();
return prod_rec(root, l, r, false);
}
X prod(np root) { return (root ? root->prod : Monoid::unit()); }
np reverse(np root, u32 l, u32 r) {
assert(0 <= l && l <= r && r <= root->size);
if (r - l <= 1) return root;
auto [nl, nm, nr] = split3(root, l, r);
nm->rev ^= 1;
swap(nm->l, nm->r);
swap(nm->prod, nm->rev_prod);
return merge3(nl, nm, nr);
}
np set(np root, u32 k, const X &x) { return set_rec(root, k, x); }
np multiply(np root, u32 k, const X &x) { return multiply_rec(root, k, x); }
X get(np root, u32 k) { return get_rec(root, k, false); }
vc<X> get_all(np root) {
vc<X> res;
auto dfs = [&](auto &dfs, np root, bool rev) -> void {
if (!root) return;
dfs(dfs, (rev ? root->r : root->l), rev ^ root->rev);
res.eb(root->x);
dfs(dfs, (rev ? root->l : root->r), rev ^ root->rev);
};
dfs(dfs, root, 0);
return res;
}
template <typename F>
pair<np, np> split_max_right(np root, const F check) {
assert(check(Monoid::unit()));
X x = Monoid::unit();
return split_max_right_rec(root, check, x);
}
private:
inline u32 xor128() {
static u32 x = 123456789;
static u32 y = 362436069;
static u32 z = 521288629;
static u32 w = 88675123;
u32 t = x ^ (x << 11);
x = y;
y = z;
z = w;
return w = (w ^ (w >> 19)) ^ (t ^ (t >> 8));
}
void prop(np c) {
// 自身をコピーする必要はない。
// 子をコピーする必要がある。複数の親を持つ可能性があるため。
if (c->rev) {
if (c->l) {
c->l = copy_node(c->l);
c->l->rev ^= 1;
swap(c->l->l, c->l->r);
swap(c->l->prod, c->l->rev_prod);
}
if (c->r) {
c->r = copy_node(c->r);
c->r->rev ^= 1;
swap(c->r->l, c->r->r);
swap(c->r->prod, c->r->rev_prod);
}
c->rev = 0;
}
}
void update(np c) {
// データを保ったまま正常化するだけなので、コピー不要
c->size = 1;
c->prod = c->rev_prod = c->x;
if (c->l) {
c->size += c->l->size;
c->prod = Monoid::op(c->l->prod, c->prod);
c->rev_prod = Monoid::op(c->rev_prod, c->l->rev_prod);
}
if (c->r) {
c->size += c->r->size;
c->prod = Monoid::op(c->prod, c->r->prod);
c->rev_prod = Monoid::op(c->r->rev_prod, c->rev_prod);
}
}
np merge_rec(np l_root, np r_root) {
if (!l_root) return r_root;
if (!r_root) return l_root;
u32 sl = l_root->size, sr = r_root->size;
if (xor128() % (sl + sr) < sl) {
prop(l_root);
l_root = copy_node(l_root);
l_root->r = merge_rec(l_root->r, r_root);
update(l_root);
return l_root;
}
prop(r_root);
r_root = copy_node(r_root);
r_root->l = merge_rec(l_root, r_root->l);
update(r_root);
return r_root;
}
pair<np, np> split_rec(np root, u32 k) {
if (!root) return {nullptr, nullptr};
prop(root);
u32 sl = (root->l ? root->l->size : 0);
if (k <= sl) {
auto [nl, nr] = split_rec(root->l, k);
root = copy_node(root);
root->l = nr;
update(root);
return {nl, root};
}
auto [nl, nr] = split_rec(root->r, k - (1 + sl));
root = copy_node(root);
root->r = nl;
update(root);
return {root, nr};
}
np set_rec(np root, u32 k, const X &x) {
if (!root) return root;
prop(root);
u32 sl = (root->l ? root->l->size : 0);
if (k < sl) {
root = copy_node(root);
root->l = set_rec(root->l, k, x);
update(root);
return root;
}
if (k == sl) {
root = copy_node(root);
root->x = x;
update(root);
return root;
}
root = copy_node(root);
root->r = set_rec(root->r, k - (1 + sl), x);
update(root);
return root;
}
np multiply_rec(np root, u32 k, const X &x) {
if (!root) return root;
prop(root);
u32 sl = (root->l ? root->l->size : 0);
if (k < sl) {
root = copy_node(root);
root->l = multiply_rec(root->l, k, x);
update(root);
return root;
}
if (k == sl) {
root = copy_node(root);
root->x = Monoid::op(root->x, x);
update(root);
return root;
}
root = copy_node(root);
root->r = multiply_rec(root->r, k - (1 + sl), x);
update(root);
return root;
}
X prod_rec(np root, u32 l, u32 r, bool rev) {
if (l == 0 && r == root->size) { return (rev ? root->rev_prod : root->prod); }
np left = (rev ? root->r : root->l);
np right = (rev ? root->l : root->r);
u32 sl = (left ? left->size : 0);
X res = Monoid::unit();
if (l < sl) {
X y = prod_rec(left, l, min(r, sl), rev ^ root->rev);
res = Monoid::op(res, y);
}
if (l <= sl && sl < r) res = Monoid::op(res, root->x);
u32 k = 1 + sl;
if (k < r) {
X y = prod_rec(right, max(k, l) - k, r - k, rev ^ root->rev);
res = Monoid::op(res, y);
}
return res;
}
X get_rec(np root, u32 k, bool rev) {
np left = (rev ? root->r : root->l);
np right = (rev ? root->l : root->r);
u32 sl = (left ? left->size : 0);
if (k == sl) return root->x;
rev ^= root->rev;
if (k < sl) return get_rec(left, k, rev);
return get_rec(right, k - (1 + sl), rev);
}
template <typename F>
pair<np, np> split_max_right_rec(np root, const F &check, X &x) {
if (!root) return {nullptr, nullptr};
prop(root);
root = copy_node(root);
X y = Monoid::op(x, root->prod);
if (check(y)) {
x = y;
return {root, nullptr};
}
np left = root->l, right = root->r;
if (left) {
X y = Monoid::op(x, root->l->prod);
if (!check(y)) {
auto [n1, n2] = split_max_right_rec(left, check, x);
root->l = n2;
update(root);
return {n1, root};
}
x = y;
}
y = Monoid::op(x, root->x);
if (!check(y)) {
root->l = nullptr;
update(root);
return {left, root};
}
x = y;
auto [n1, n2] = split_max_right_rec(right, check, x);
root->r = n1;
update(root);
return {root, n2};
}
};