This documentation is automatically generated by online-judge-tools/verification-helper
#define PROBLEM "https://judge.yosupo.jp/problem/aplusb"
#include "my_template.hpp"
#include "game/solve_partizan_game.hpp"
void test_push() {
// LESSONS IN PLAY p.113
vc<string> states = {"LR", ".RL", ".R", "RRL"};
auto get_options = [&](string s) -> pair<vc<string>, vc<string>> {
vc<string> left_ops, right_ops;
FOR(i, len(s)) {
if (s[i] == '.') continue;
string t = s;
char x = '.';
int p = i;
while (p >= 0) {
swap(x, t[p--]);
if (x == '.') break;
}
if (s[i] == 'L') left_ops.eb(t);
if (s[i] == 'R') right_ops.eb(t);
}
return {left_ops, right_ops};
};
auto MP = solve_partizan_game<string, ll>(states, get_options);
// for (auto&& [s, x]: MP) { print(s, x.to_string()); }
assert(MP["LR"].to_string() == "-3/2");
assert(MP[".RL"].to_string() == "7/4");
assert(MP[".R"].to_string() == "-2/1");
assert(MP["RRL"].to_string() == "13/8");
}
void test_problem_5_2() {
// switch になるので解けない
int LIM = 10;
vc<int> states(LIM);
iota(all(states), 0);
auto get_options = [&](int s) -> pair<vc<int>, vc<int>> {
vc<int> left_ops, right_ops;
if (s % 3 == 0 && s >= 1) left_ops.eb(s - 1), right_ops.eb(s - 1);
if (s % 3 == 0 && s >= 2) left_ops.eb(s - 2), right_ops.eb(s - 2);
if (s % 3 == 1 && s >= 1) left_ops.eb(s - 1);
if (s % 3 == 1 && s >= 2) left_ops.eb(s - 2);
if (s % 3 == 2 && s >= 1) right_ops.eb(s - 1);
if (s % 3 == 2 && s >= 2) right_ops.eb(s - 2);
return {left_ops, right_ops};
};
auto MP = solve_partizan_game<int, ll>(states, get_options);
assert(MP.empty());
}
void test_problem_5_3() {
int LIM = 10;
vc<int> states(LIM);
iota(all(states), 0);
auto get_options = [&](int s) -> pair<vc<int>, vc<int>> {
vc<int> left_ops, right_ops;
if (s % 2 == 0 && s >= 2) left_ops.eb(s - 2);
if (s % 2 == 0 && s >= 1) right_ops.eb(s - 1);
if (s % 2 == 1 && s >= 1) left_ops.eb(s - 1);
if (s % 2 == 1 && s >= 2) right_ops.eb(s - 2);
return {left_ops, right_ops};
};
auto MP = solve_partizan_game<int, ll>(states, get_options);
assert(MP[0].to_string() == "0/1");
assert(MP[1].to_string() == "1/1");
assert(MP[2].to_string() == "1/2");
assert(MP[3].to_string() == "3/4");
assert(MP[4].to_string() == "5/8");
assert(MP[5].to_string() == "11/16");
}
int solve_cherries(string s) {
// LR cherries を O(N) で解く
auto eval = [&](char c) -> int {
if (c == 'L') return 1;
if (c == 'R') return -1;
return 0;
};
int n = len(s);
if (n == 0) return 0;
int res = 0;
FOR(2) {
reverse(all(s));
while (n >= 2 && s[n - 1] == s[n - 2]) {
res += eval(s[n - 1]);
s.pop_back();
n = len(s);
}
}
char a = '.', b = '.';
FOR_R(i, n - 1) if (s[i] == s[i + 1]) a = s[i];
FOR(i, n - 1) if (s[i] == s[i + 1]) b = s[i];
int x = eval(s[0]) + eval(a) + eval(b) + eval(s[n - 1]);
return res + x / 2;
};
void test_cherries() {
int MAX_LEN = 20;
vc<string> states;
states.eb("");
int p = 0, q = 1;
FOR(MAX_LEN) {
FOR(i, p, q) {
states.eb(states[i] + "L");
states.eb(states[i] + "R");
}
p = q;
q = len(states);
}
auto get_options = [&](string s) -> pair<vc<string>, vc<string>> {
vc<string> left, right;
int n = len(s);
if (n && s[0] == 'L') left.eb(s.substr(1, n - 1));
if (n && s[0] == 'R') right.eb(s.substr(1, n - 1));
if (n && s[n - 1] == 'L') left.eb(s.substr(0, n - 1));
if (n && s[n - 1] == 'R') right.eb(s.substr(0, n - 1));
return {left, right};
};
auto MP = solve_partizan_game<string, ll>(states, get_options);
for (auto&& [s, x]: MP) {
int my_ans = solve_cherries(s);
assert(x == Dyadic_Rational<ll>(my_ans, 1));
}
}
void test() {
test_push();
test_problem_5_2();
test_problem_5_3();
test_cherries();
}
void solve() {
int a, b;
cin >> a >> b;
cout << a + b << "\n";
}
signed main() {
test();
solve();
return 0;
}
#line 1 "test/mytest/partizan.test.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/aplusb"
#line 1 "my_template.hpp"
#if defined(LOCAL)
#include <my_template_compiled.hpp>
#else
#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using u32 = unsigned int;
using u64 = unsigned long long;
using i128 = __int128;
using u128 = unsigned __int128;
using f128 = __float128;
template <class T>
constexpr T infty = 0;
template <>
constexpr int infty<int> = 1'000'000'000;
template <>
constexpr ll infty<ll> = ll(infty<int>) * infty<int> * 2;
template <>
constexpr u32 infty<u32> = infty<int>;
template <>
constexpr u64 infty<u64> = infty<ll>;
template <>
constexpr i128 infty<i128> = i128(infty<ll>) * infty<ll>;
template <>
constexpr double infty<double> = infty<ll>;
template <>
constexpr long double infty<long double> = infty<ll>;
using pi = pair<ll, ll>;
using vi = vector<ll>;
template <class T>
using vc = vector<T>;
template <class T>
using vvc = vector<vc<T>>;
template <class T>
using vvvc = vector<vvc<T>>;
template <class T>
using vvvvc = vector<vvvc<T>>;
template <class T>
using vvvvvc = vector<vvvvc<T>>;
template <class T>
using pq = priority_queue<T>;
template <class T>
using pqg = priority_queue<T, vector<T>, greater<T>>;
#define vv(type, name, h, ...) \
vector<vector<type>> name(h, vector<type>(__VA_ARGS__))
#define vvv(type, name, h, w, ...) \
vector<vector<vector<type>>> name( \
h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))
#define vvvv(type, name, a, b, c, ...) \
vector<vector<vector<vector<type>>>> name( \
a, vector<vector<vector<type>>>( \
b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))
// https://trap.jp/post/1224/
#define FOR1(a) for (ll _ = 0; _ < ll(a); ++_)
#define FOR2(i, a) for (ll i = 0; i < ll(a); ++i)
#define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i)
#define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c))
#define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i)
#define overload4(a, b, c, d, e, ...) e
#define overload3(a, b, c, d, ...) d
#define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__)
#define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__)
#define FOR_subset(t, s) \
for (ll t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s)))
#define all(x) x.begin(), x.end()
#define len(x) ll(x.size())
#define elif else if
#define eb emplace_back
#define mp make_pair
#define mt make_tuple
#define fi first
#define se second
#define stoi stoll
int popcnt(int x) { return __builtin_popcount(x); }
int popcnt(u32 x) { return __builtin_popcount(x); }
int popcnt(ll x) { return __builtin_popcountll(x); }
int popcnt(u64 x) { return __builtin_popcountll(x); }
int popcnt_mod_2(int x) { return __builtin_parity(x); }
int popcnt_mod_2(u32 x) { return __builtin_parity(x); }
int popcnt_mod_2(ll x) { return __builtin_parityll(x); }
int popcnt_mod_2(u64 x) { return __builtin_parityll(x); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2)
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2)
int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
template <typename T>
T floor(T a, T b) {
return a / b - (a % b && (a ^ b) < 0);
}
template <typename T>
T ceil(T x, T y) {
return floor(x + y - 1, y);
}
template <typename T>
T bmod(T x, T y) {
return x - y * floor(x, y);
}
template <typename T>
pair<T, T> divmod(T x, T y) {
T q = floor(x, y);
return {q, x - q * y};
}
template <typename T, typename U>
T SUM(const vector<U> &A) {
T sm = 0;
for (auto &&a: A) sm += a;
return sm;
}
#define MIN(v) *min_element(all(v))
#define MAX(v) *max_element(all(v))
#define LB(c, x) distance((c).begin(), lower_bound(all(c), (x)))
#define UB(c, x) distance((c).begin(), upper_bound(all(c), (x)))
#define UNIQUE(x) \
sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit()
template <typename T>
T POP(deque<T> &que) {
T a = que.front();
que.pop_front();
return a;
}
template <typename T>
T POP(pq<T> &que) {
T a = que.top();
que.pop();
return a;
}
template <typename T>
T POP(pqg<T> &que) {
T a = que.top();
que.pop();
return a;
}
template <typename T>
T POP(vc<T> &que) {
T a = que.back();
que.pop_back();
return a;
}
template <typename F>
ll binary_search(F check, ll ok, ll ng, bool check_ok = true) {
if (check_ok) assert(check(ok));
while (abs(ok - ng) > 1) {
auto x = (ng + ok) / 2;
(check(x) ? ok : ng) = x;
}
return ok;
}
template <typename F>
double binary_search_real(F check, double ok, double ng, int iter = 100) {
FOR(iter) {
double x = (ok + ng) / 2;
(check(x) ? ok : ng) = x;
}
return (ok + ng) / 2;
}
template <class T, class S>
inline bool chmax(T &a, const S &b) {
return (a < b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chmin(T &a, const S &b) {
return (a > b ? a = b, 1 : 0);
}
// ? は -1
vc<int> s_to_vi(const string &S, char first_char) {
vc<int> A(S.size());
FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); }
return A;
}
template <typename T, typename U>
vector<T> cumsum(vector<U> &A, int off = 1) {
int N = A.size();
vector<T> B(N + 1);
FOR(i, N) { B[i + 1] = B[i] + A[i]; }
if (off == 0) B.erase(B.begin());
return B;
}
// stable sort
template <typename T>
vector<int> argsort(const vector<T> &A) {
vector<int> ids(len(A));
iota(all(ids), 0);
sort(all(ids),
[&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); });
return ids;
}
// A[I[0]], A[I[1]], ...
template <typename T>
vc<T> rearrange(const vc<T> &A, const vc<int> &I) {
vc<T> B(len(I));
FOR(i, len(I)) B[i] = A[I[i]];
return B;
}
#endif
#line 1 "game/dyadic_rational.hpp"
// a+b/2^M の形で持つ
template <typename INTEGER>
struct Dyadic_Rational {
using X = Dyadic_Rational;
INTEGER a, b;
static constexpr int M = std::numeric_limits<INTEGER>::digits - 2;
Dyadic_Rational(INTEGER a = 0) : a(a), b(0) {}
// x + y / z
Dyadic_Rational(INTEGER x, INTEGER y, INTEGER z) : a(x), b(y) {
auto [q, r] = divmod(b, z);
a += q;
b = r;
b *= (INTEGER(1) << M) / z;
}
// x/y
Dyadic_Rational(INTEGER x, INTEGER y) : Dyadic_Rational(0, x, y) {}
static X from_ab(INTEGER a, INTEGER b) {
X x(a);
x.b = b;
return x;
}
// 比較
bool operator==(X const& rhs) const { return (a == rhs.a && b == rhs.b); }
bool operator!=(X const& rhs) const { return !(*this == rhs); }
bool operator<(X const& rhs) const {
return (a < rhs.a) || (a == rhs.a && b < rhs.b);
}
bool operator<=(X const& rhs) const {
return (a < rhs.a) || (a == rhs.a && b <= rhs.b);
}
bool operator>(X const& rhs) const {
return (a > rhs.a) || (a == rhs.a && b > rhs.b);
}
bool operator>=(X const& rhs) const {
return (a > rhs.a) || (a == rhs.a && b >= rhs.b);
}
// 加法
friend X operator+(const X& x, const X& y) {
INTEGER a = x.a + y.a, b = x.b + y.b;
while (b >= INTEGER(1) << M) {
++a;
b -= INTEGER(1) << M;
}
return from_ab(a, b);
}
friend X operator-(const X& x, const X& y) {
INTEGER a = x.a - y.a, b = x.b - y.b;
while (b < 0) {
--a;
b += INTEGER(1) << M;
}
return from_ab(a, b);
}
friend X operator-(const X& x) {
INTEGER a = -x.a, b = -x.b;
while (b < 0) {
--a;
b += INTEGER(1) << M;
}
return from_ab(a, b);
}
X& operator+=(const X& x) { return (*this) = (*this) + x; }
X& operator-=(const X& x) { return (*this) = (*this) - x; }
static X simplest(const X& x, const X& y) {
assert(x < y);
if (y.a < 0) return -simplest(-y, -x);
{
INTEGER l = x.a + 1;
INTEGER r = (y.b == 0 ? y.a - 1 : y.a);
if (l <= 0 && 0 <= r) return X(0);
if (l <= r && 0 <= l) return X(l);
if (l <= r && r <= 0) return X(r);
}
INTEGER l = x.b + 1;
INTEGER r = (y.b == 0 ? (INTEGER(1) << M) - 1 : y.b - 1);
if (l == r) return from_ab(x.a, l);
int k = topbit(l ^ r);
r &= ~((INTEGER(1) << k) - 1);
return from_ab(x.a, r);
}
static constexpr X infinity() { return from_ab(INTEGER(1) << M, 0); }
string to_string() {
ll x = a, y = b, z = INTEGER(1) << M;
while (y % 2 == 0 && z % 2 == 0) { y /= 2, z /= 2; }
y += x * z;
return std::to_string(y) + "/" + std::to_string(z);
}
};
#line 2 "game/solve_partizan_game.hpp"
// 全部 dyadic rational number になるときだけ解ける
// 失敗したときは、empty map が返る
// ・states:興味のある state 全体
// ・get_options:pair<vc<STATE>, vc<STATE>>(STATE), left ops / right ops
template <typename STATE, typename INTEGER, typename F>
unordered_map<STATE, Dyadic_Rational<INTEGER>> solve_partizan_game(
const vector<STATE>& states, F get_options) {
using X = Dyadic_Rational<INTEGER>;
unordered_map<STATE, X> MP;
bool success = 1;
auto dfs = [&](auto& dfs, const STATE& s) -> X {
if (!success) return X();
if (MP.count(s)) return MP[s];
vc<X> left, right;
X xl = -X::infinity(), xr = X::infinity();
auto [left_ops, right_ops] = get_options(s);
for (auto&& t: left_ops) chmax(xl, dfs(dfs, t));
for (auto&& t: right_ops) chmin(xr, dfs(dfs, t));
if (xl >= xr) {
// switch
success = 0;
MP.clear();
return X();
}
return (MP[s] = X::simplest(xl, xr));
};
for (auto&& s: states) dfs(dfs, s);
return MP;
}
#line 5 "test/mytest/partizan.test.cpp"
void test_push() {
// LESSONS IN PLAY p.113
vc<string> states = {"LR", ".RL", ".R", "RRL"};
auto get_options = [&](string s) -> pair<vc<string>, vc<string>> {
vc<string> left_ops, right_ops;
FOR(i, len(s)) {
if (s[i] == '.') continue;
string t = s;
char x = '.';
int p = i;
while (p >= 0) {
swap(x, t[p--]);
if (x == '.') break;
}
if (s[i] == 'L') left_ops.eb(t);
if (s[i] == 'R') right_ops.eb(t);
}
return {left_ops, right_ops};
};
auto MP = solve_partizan_game<string, ll>(states, get_options);
// for (auto&& [s, x]: MP) { print(s, x.to_string()); }
assert(MP["LR"].to_string() == "-3/2");
assert(MP[".RL"].to_string() == "7/4");
assert(MP[".R"].to_string() == "-2/1");
assert(MP["RRL"].to_string() == "13/8");
}
void test_problem_5_2() {
// switch になるので解けない
int LIM = 10;
vc<int> states(LIM);
iota(all(states), 0);
auto get_options = [&](int s) -> pair<vc<int>, vc<int>> {
vc<int> left_ops, right_ops;
if (s % 3 == 0 && s >= 1) left_ops.eb(s - 1), right_ops.eb(s - 1);
if (s % 3 == 0 && s >= 2) left_ops.eb(s - 2), right_ops.eb(s - 2);
if (s % 3 == 1 && s >= 1) left_ops.eb(s - 1);
if (s % 3 == 1 && s >= 2) left_ops.eb(s - 2);
if (s % 3 == 2 && s >= 1) right_ops.eb(s - 1);
if (s % 3 == 2 && s >= 2) right_ops.eb(s - 2);
return {left_ops, right_ops};
};
auto MP = solve_partizan_game<int, ll>(states, get_options);
assert(MP.empty());
}
void test_problem_5_3() {
int LIM = 10;
vc<int> states(LIM);
iota(all(states), 0);
auto get_options = [&](int s) -> pair<vc<int>, vc<int>> {
vc<int> left_ops, right_ops;
if (s % 2 == 0 && s >= 2) left_ops.eb(s - 2);
if (s % 2 == 0 && s >= 1) right_ops.eb(s - 1);
if (s % 2 == 1 && s >= 1) left_ops.eb(s - 1);
if (s % 2 == 1 && s >= 2) right_ops.eb(s - 2);
return {left_ops, right_ops};
};
auto MP = solve_partizan_game<int, ll>(states, get_options);
assert(MP[0].to_string() == "0/1");
assert(MP[1].to_string() == "1/1");
assert(MP[2].to_string() == "1/2");
assert(MP[3].to_string() == "3/4");
assert(MP[4].to_string() == "5/8");
assert(MP[5].to_string() == "11/16");
}
int solve_cherries(string s) {
// LR cherries を O(N) で解く
auto eval = [&](char c) -> int {
if (c == 'L') return 1;
if (c == 'R') return -1;
return 0;
};
int n = len(s);
if (n == 0) return 0;
int res = 0;
FOR(2) {
reverse(all(s));
while (n >= 2 && s[n - 1] == s[n - 2]) {
res += eval(s[n - 1]);
s.pop_back();
n = len(s);
}
}
char a = '.', b = '.';
FOR_R(i, n - 1) if (s[i] == s[i + 1]) a = s[i];
FOR(i, n - 1) if (s[i] == s[i + 1]) b = s[i];
int x = eval(s[0]) + eval(a) + eval(b) + eval(s[n - 1]);
return res + x / 2;
};
void test_cherries() {
int MAX_LEN = 20;
vc<string> states;
states.eb("");
int p = 0, q = 1;
FOR(MAX_LEN) {
FOR(i, p, q) {
states.eb(states[i] + "L");
states.eb(states[i] + "R");
}
p = q;
q = len(states);
}
auto get_options = [&](string s) -> pair<vc<string>, vc<string>> {
vc<string> left, right;
int n = len(s);
if (n && s[0] == 'L') left.eb(s.substr(1, n - 1));
if (n && s[0] == 'R') right.eb(s.substr(1, n - 1));
if (n && s[n - 1] == 'L') left.eb(s.substr(0, n - 1));
if (n && s[n - 1] == 'R') right.eb(s.substr(0, n - 1));
return {left, right};
};
auto MP = solve_partizan_game<string, ll>(states, get_options);
for (auto&& [s, x]: MP) {
int my_ans = solve_cherries(s);
assert(x == Dyadic_Rational<ll>(my_ans, 1));
}
}
void test() {
test_push();
test_problem_5_2();
test_problem_5_3();
test_cherries();
}
void solve() {
int a, b;
cin >> a >> b;
cout << a + b << "\n";
}
signed main() {
test();
solve();
return 0;
}