This documentation is automatically generated by online-judge-tools/verification-helper
#include "game/solve_partizan_game.hpp"
#include "game/dyadic_rational.hpp"
// 全部 dyadic rational number になるときだけ解ける
// 失敗したときは、empty map が返る
// ・states:興味のある state 全体
// ・get_options:pair<vc<STATE>, vc<STATE>>(STATE), left ops / right ops
template <typename STATE, typename INTEGER, typename F>
unordered_map<STATE, Dyadic_Rational<INTEGER>> solve_partizan_game(
const vector<STATE>& states, F get_options) {
using X = Dyadic_Rational<INTEGER>;
unordered_map<STATE, X> MP;
bool success = 1;
auto dfs = [&](auto& dfs, const STATE& s) -> X {
if (!success) return X();
if (MP.count(s)) return MP[s];
vc<X> left, right;
X xl = -X::infinity(), xr = X::infinity();
auto [left_ops, right_ops] = get_options(s);
for (auto&& t: left_ops) chmax(xl, dfs(dfs, t));
for (auto&& t: right_ops) chmin(xr, dfs(dfs, t));
if (xl >= xr) {
// switch
success = 0;
MP.clear();
return X();
}
return (MP[s] = X::simplest(xl, xr));
};
for (auto&& s: states) dfs(dfs, s);
return MP;
}
#line 1 "game/dyadic_rational.hpp"
// a+b/2^M の形で持つ
template <typename INTEGER>
struct Dyadic_Rational {
using X = Dyadic_Rational;
INTEGER a, b;
static constexpr int M = std::numeric_limits<INTEGER>::digits - 2;
Dyadic_Rational(INTEGER a = 0) : a(a), b(0) {}
// x + y / z
Dyadic_Rational(INTEGER x, INTEGER y, INTEGER z) : a(x), b(y) {
auto [q, r] = divmod(b, z);
a += q;
b = r;
b *= (INTEGER(1) << M) / z;
}
// x/y
Dyadic_Rational(INTEGER x, INTEGER y) : Dyadic_Rational(0, x, y) {}
static X from_ab(INTEGER a, INTEGER b) {
X x(a);
x.b = b;
return x;
}
// 比較
bool operator==(X const& rhs) const { return (a == rhs.a && b == rhs.b); }
bool operator!=(X const& rhs) const { return !(*this == rhs); }
bool operator<(X const& rhs) const {
return (a < rhs.a) || (a == rhs.a && b < rhs.b);
}
bool operator<=(X const& rhs) const {
return (a < rhs.a) || (a == rhs.a && b <= rhs.b);
}
bool operator>(X const& rhs) const {
return (a > rhs.a) || (a == rhs.a && b > rhs.b);
}
bool operator>=(X const& rhs) const {
return (a > rhs.a) || (a == rhs.a && b >= rhs.b);
}
// 加法
friend X operator+(const X& x, const X& y) {
INTEGER a = x.a + y.a, b = x.b + y.b;
while (b >= INTEGER(1) << M) {
++a;
b -= INTEGER(1) << M;
}
return from_ab(a, b);
}
friend X operator-(const X& x, const X& y) {
INTEGER a = x.a - y.a, b = x.b - y.b;
while (b < 0) {
--a;
b += INTEGER(1) << M;
}
return from_ab(a, b);
}
friend X operator-(const X& x) {
INTEGER a = -x.a, b = -x.b;
while (b < 0) {
--a;
b += INTEGER(1) << M;
}
return from_ab(a, b);
}
X& operator+=(const X& x) { return (*this) = (*this) + x; }
X& operator-=(const X& x) { return (*this) = (*this) - x; }
static X simplest(const X& x, const X& y) {
assert(x < y);
if (y.a < 0) return -simplest(-y, -x);
{
INTEGER l = x.a + 1;
INTEGER r = (y.b == 0 ? y.a - 1 : y.a);
if (l <= 0 && 0 <= r) return X(0);
if (l <= r && 0 <= l) return X(l);
if (l <= r && r <= 0) return X(r);
}
INTEGER l = x.b + 1;
INTEGER r = (y.b == 0 ? (INTEGER(1) << M) - 1 : y.b - 1);
if (l == r) return from_ab(x.a, l);
int k = topbit(l ^ r);
r &= ~((INTEGER(1) << k) - 1);
return from_ab(x.a, r);
}
static constexpr X infinity() { return from_ab(INTEGER(1) << M, 0); }
string to_string() {
ll x = a, y = b, z = INTEGER(1) << M;
while (y % 2 == 0 && z % 2 == 0) { y /= 2, z /= 2; }
y += x * z;
return std::to_string(y) + "/" + std::to_string(z);
}
};
#line 2 "game/solve_partizan_game.hpp"
// 全部 dyadic rational number になるときだけ解ける
// 失敗したときは、empty map が返る
// ・states:興味のある state 全体
// ・get_options:pair<vc<STATE>, vc<STATE>>(STATE), left ops / right ops
template <typename STATE, typename INTEGER, typename F>
unordered_map<STATE, Dyadic_Rational<INTEGER>> solve_partizan_game(
const vector<STATE>& states, F get_options) {
using X = Dyadic_Rational<INTEGER>;
unordered_map<STATE, X> MP;
bool success = 1;
auto dfs = [&](auto& dfs, const STATE& s) -> X {
if (!success) return X();
if (MP.count(s)) return MP[s];
vc<X> left, right;
X xl = -X::infinity(), xr = X::infinity();
auto [left_ops, right_ops] = get_options(s);
for (auto&& t: left_ops) chmax(xl, dfs(dfs, t));
for (auto&& t: right_ops) chmin(xr, dfs(dfs, t));
if (xl >= xr) {
// switch
success = 0;
MP.clear();
return X();
}
return (MP[s] = X::simplest(xl, xr));
};
for (auto&& s: states) dfs(dfs, s);
return MP;
}