This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub maspypy/library
#define PROBLEM "https://atcoder.jp/contests/abc139/tasks/abc139_f" #define ERROR 1e-10 #include "my_template.hpp" #include "other/io.hpp" #include "geo/max_norm_sum.hpp" using P = Point<ll>; void solve() { LL(N); VEC(P, point, N); auto [val, I] = max_norm_sum<ll, ll>(point); ll x = 0, y = 0; for (auto&& i: I) x += point[i].x, y += point[i].y; assert(val == x * x + y * y); double ANS = sqrtl(val); print(ANS); } signed main() { solve(); return 0; }
#line 1 "test/5_atcoder/abc139f.test.cpp" #define PROBLEM "https://atcoder.jp/contests/abc139/tasks/abc139_f" #define ERROR 1e-10 #line 1 "my_template.hpp" #if defined(LOCAL) #include <my_template_compiled.hpp> #else // https://codeforces.com/blog/entry/96344 #pragma GCC optimize("Ofast,unroll-loops") // いまの CF だとこれ入れると動かない? // #pragma GCC target("avx2,popcnt") #include <bits/stdc++.h> using namespace std; using ll = long long; using u8 = uint8_t; using u16 = uint16_t; using u32 = uint32_t; using u64 = uint64_t; using i128 = __int128; using u128 = unsigned __int128; using f128 = __float128; template <class T> constexpr T infty = 0; template <> constexpr int infty<int> = 1'010'000'000; template <> constexpr ll infty<ll> = 2'020'000'000'000'000'000; template <> constexpr u32 infty<u32> = infty<int>; template <> constexpr u64 infty<u64> = infty<ll>; template <> constexpr i128 infty<i128> = i128(infty<ll>) * 2'000'000'000'000'000'000; template <> constexpr double infty<double> = infty<ll>; template <> constexpr long double infty<long double> = infty<ll>; using pi = pair<ll, ll>; using vi = vector<ll>; template <class T> using vc = vector<T>; template <class T> using vvc = vector<vc<T>>; template <class T> using vvvc = vector<vvc<T>>; template <class T> using vvvvc = vector<vvvc<T>>; template <class T> using vvvvvc = vector<vvvvc<T>>; template <class T> using pq = priority_queue<T>; template <class T> using pqg = priority_queue<T, vector<T>, greater<T>>; #define vv(type, name, h, ...) vector<vector<type>> name(h, vector<type>(__VA_ARGS__)) #define vvv(type, name, h, w, ...) vector<vector<vector<type>>> name(h, vector<vector<type>>(w, vector<type>(__VA_ARGS__))) #define vvvv(type, name, a, b, c, ...) \ vector<vector<vector<vector<type>>>> name(a, vector<vector<vector<type>>>(b, vector<vector<type>>(c, vector<type>(__VA_ARGS__)))) // https://trap.jp/post/1224/ #define FOR1(a) for (ll _ = 0; _ < ll(a); ++_) #define FOR2(i, a) for (ll i = 0; i < ll(a); ++i) #define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i) #define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c)) #define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i) #define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i) #define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i) #define overload4(a, b, c, d, e, ...) e #define overload3(a, b, c, d, ...) d #define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__) #define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__) #define FOR_subset(t, s) for (ll t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s))) #define all(x) x.begin(), x.end() #define len(x) ll(x.size()) #define elif else if #define eb emplace_back #define mp make_pair #define mt make_tuple #define fi first #define se second #define stoi stoll int popcnt(int x) { return __builtin_popcount(x); } int popcnt(u32 x) { return __builtin_popcount(x); } int popcnt(ll x) { return __builtin_popcountll(x); } int popcnt(u64 x) { return __builtin_popcountll(x); } int popcnt_mod_2(int x) { return __builtin_parity(x); } int popcnt_mod_2(u32 x) { return __builtin_parity(x); } int popcnt_mod_2(ll x) { return __builtin_parityll(x); } int popcnt_mod_2(u64 x) { return __builtin_parityll(x); } // (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2) int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); } int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); } int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); } int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); } // (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2) int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); } int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); } int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); } int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); } template <typename T> T floor(T a, T b) { return a / b - (a % b && (a ^ b) < 0); } template <typename T> T ceil(T x, T y) { return floor(x + y - 1, y); } template <typename T> T bmod(T x, T y) { return x - y * floor(x, y); } template <typename T> pair<T, T> divmod(T x, T y) { T q = floor(x, y); return {q, x - q * y}; } template <typename T, typename U> T SUM(const vector<U> &A) { T sm = 0; for (auto &&a: A) sm += a; return sm; } #define MIN(v) *min_element(all(v)) #define MAX(v) *max_element(all(v)) #define LB(c, x) distance((c).begin(), lower_bound(all(c), (x))) #define UB(c, x) distance((c).begin(), upper_bound(all(c), (x))) #define UNIQUE(x) sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit() template <typename T> T POP(deque<T> &que) { T a = que.front(); que.pop_front(); return a; } template <typename T> T POP(pq<T> &que) { T a = que.top(); que.pop(); return a; } template <typename T> T POP(pqg<T> &que) { T a = que.top(); que.pop(); return a; } template <typename T> T POP(vc<T> &que) { T a = que.back(); que.pop_back(); return a; } template <typename F> ll binary_search(F check, ll ok, ll ng, bool check_ok = true) { if (check_ok) assert(check(ok)); while (abs(ok - ng) > 1) { auto x = (ng + ok) / 2; (check(x) ? ok : ng) = x; } return ok; } template <typename F> double binary_search_real(F check, double ok, double ng, int iter = 100) { FOR(iter) { double x = (ok + ng) / 2; (check(x) ? ok : ng) = x; } return (ok + ng) / 2; } template <class T, class S> inline bool chmax(T &a, const S &b) { return (a < b ? a = b, 1 : 0); } template <class T, class S> inline bool chmin(T &a, const S &b) { return (a > b ? a = b, 1 : 0); } // ? は -1 vc<int> s_to_vi(const string &S, char first_char) { vc<int> A(S.size()); FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); } return A; } template <typename T, typename U> vector<T> cumsum(vector<U> &A, int off = 1) { int N = A.size(); vector<T> B(N + 1); FOR(i, N) { B[i + 1] = B[i] + A[i]; } if (off == 0) B.erase(B.begin()); return B; } // stable sort template <typename T> vector<int> argsort(const vector<T> &A) { vector<int> ids(len(A)); iota(all(ids), 0); sort(all(ids), [&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); }); return ids; } // A[I[0]], A[I[1]], ... template <typename T> vc<T> rearrange(const vc<T> &A, const vc<int> &I) { vc<T> B(len(I)); FOR(i, len(I)) B[i] = A[I[i]]; return B; } template <typename T, typename... Vectors> void concat(vc<T> &first, const Vectors &... others) { vc<T> &res = first; (res.insert(res.end(), others.begin(), others.end()), ...); } #endif #line 1 "other/io.hpp" #define FASTIO #include <unistd.h> // https://judge.yosupo.jp/submission/21623 namespace fastio { static constexpr uint32_t SZ = 1 << 17; char ibuf[SZ]; char obuf[SZ]; char out[100]; // pointer of ibuf, obuf uint32_t pil = 0, pir = 0, por = 0; struct Pre { char num[10000][4]; constexpr Pre() : num() { for (int i = 0; i < 10000; i++) { int n = i; for (int j = 3; j >= 0; j--) { num[i][j] = n % 10 | '0'; n /= 10; } } } } constexpr pre; inline void load() { memcpy(ibuf, ibuf + pil, pir - pil); pir = pir - pil + fread(ibuf + pir - pil, 1, SZ - pir + pil, stdin); pil = 0; if (pir < SZ) ibuf[pir++] = '\n'; } inline void flush() { fwrite(obuf, 1, por, stdout); por = 0; } void rd(char &c) { do { if (pil + 1 > pir) load(); c = ibuf[pil++]; } while (isspace(c)); } void rd(string &x) { x.clear(); char c; do { if (pil + 1 > pir) load(); c = ibuf[pil++]; } while (isspace(c)); do { x += c; if (pil == pir) load(); c = ibuf[pil++]; } while (!isspace(c)); } template <typename T> void rd_real(T &x) { string s; rd(s); x = stod(s); } template <typename T> void rd_integer(T &x) { if (pil + 100 > pir) load(); char c; do c = ibuf[pil++]; while (c < '-'); bool minus = 0; if constexpr (is_signed<T>::value || is_same_v<T, i128>) { if (c == '-') { minus = 1, c = ibuf[pil++]; } } x = 0; while ('0' <= c) { x = x * 10 + (c & 15), c = ibuf[pil++]; } if constexpr (is_signed<T>::value || is_same_v<T, i128>) { if (minus) x = -x; } } void rd(int &x) { rd_integer(x); } void rd(ll &x) { rd_integer(x); } void rd(i128 &x) { rd_integer(x); } void rd(u32 &x) { rd_integer(x); } void rd(u64 &x) { rd_integer(x); } void rd(u128 &x) { rd_integer(x); } void rd(double &x) { rd_real(x); } void rd(long double &x) { rd_real(x); } void rd(f128 &x) { rd_real(x); } template <class T, class U> void rd(pair<T, U> &p) { return rd(p.first), rd(p.second); } template <size_t N = 0, typename T> void rd_tuple(T &t) { if constexpr (N < std::tuple_size<T>::value) { auto &x = std::get<N>(t); rd(x); rd_tuple<N + 1>(t); } } template <class... T> void rd(tuple<T...> &tpl) { rd_tuple(tpl); } template <size_t N = 0, typename T> void rd(array<T, N> &x) { for (auto &d: x) rd(d); } template <class T> void rd(vc<T> &x) { for (auto &d: x) rd(d); } void read() {} template <class H, class... T> void read(H &h, T &... t) { rd(h), read(t...); } void wt(const char c) { if (por == SZ) flush(); obuf[por++] = c; } void wt(const string s) { for (char c: s) wt(c); } void wt(const char *s) { size_t len = strlen(s); for (size_t i = 0; i < len; i++) wt(s[i]); } template <typename T> void wt_integer(T x) { if (por > SZ - 100) flush(); if (x < 0) { obuf[por++] = '-', x = -x; } int outi; for (outi = 96; x >= 10000; outi -= 4) { memcpy(out + outi, pre.num[x % 10000], 4); x /= 10000; } if (x >= 1000) { memcpy(obuf + por, pre.num[x], 4); por += 4; } else if (x >= 100) { memcpy(obuf + por, pre.num[x] + 1, 3); por += 3; } else if (x >= 10) { int q = (x * 103) >> 10; obuf[por] = q | '0'; obuf[por + 1] = (x - q * 10) | '0'; por += 2; } else obuf[por++] = x | '0'; memcpy(obuf + por, out + outi + 4, 96 - outi); por += 96 - outi; } template <typename T> void wt_real(T x) { ostringstream oss; oss << fixed << setprecision(15) << double(x); string s = oss.str(); wt(s); } void wt(int x) { wt_integer(x); } void wt(ll x) { wt_integer(x); } void wt(i128 x) { wt_integer(x); } void wt(u32 x) { wt_integer(x); } void wt(u64 x) { wt_integer(x); } void wt(u128 x) { wt_integer(x); } void wt(double x) { wt_real(x); } void wt(long double x) { wt_real(x); } void wt(f128 x) { wt_real(x); } template <class T, class U> void wt(const pair<T, U> val) { wt(val.first); wt(' '); wt(val.second); } template <size_t N = 0, typename T> void wt_tuple(const T t) { if constexpr (N < std::tuple_size<T>::value) { if constexpr (N > 0) { wt(' '); } const auto x = std::get<N>(t); wt(x); wt_tuple<N + 1>(t); } } template <class... T> void wt(tuple<T...> tpl) { wt_tuple(tpl); } template <class T, size_t S> void wt(const array<T, S> val) { auto n = val.size(); for (size_t i = 0; i < n; i++) { if (i) wt(' '); wt(val[i]); } } template <class T> void wt(const vector<T> val) { auto n = val.size(); for (size_t i = 0; i < n; i++) { if (i) wt(' '); wt(val[i]); } } void print() { wt('\n'); } template <class Head, class... Tail> void print(Head &&head, Tail &&... tail) { wt(head); if (sizeof...(Tail)) wt(' '); print(forward<Tail>(tail)...); } // gcc expansion. called automaticall after main. void __attribute__((destructor)) _d() { flush(); } } // namespace fastio using fastio::read; using fastio::print; using fastio::flush; #if defined(LOCAL) #define SHOW(...) SHOW_IMPL(__VA_ARGS__, SHOW6, SHOW5, SHOW4, SHOW3, SHOW2, SHOW1)(__VA_ARGS__) #define SHOW_IMPL(_1, _2, _3, _4, _5, _6, NAME, ...) NAME #define SHOW1(x) print(#x, "=", (x)), flush() #define SHOW2(x, y) print(#x, "=", (x), #y, "=", (y)), flush() #define SHOW3(x, y, z) print(#x, "=", (x), #y, "=", (y), #z, "=", (z)), flush() #define SHOW4(x, y, z, w) print(#x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w)), flush() #define SHOW5(x, y, z, w, v) print(#x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w), #v, "=", (v)), flush() #define SHOW6(x, y, z, w, v, u) print(#x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w), #v, "=", (v), #u, "=", (u)), flush() #else #define SHOW(...) #endif #define INT(...) \ int __VA_ARGS__; \ read(__VA_ARGS__) #define LL(...) \ ll __VA_ARGS__; \ read(__VA_ARGS__) #define U32(...) \ u32 __VA_ARGS__; \ read(__VA_ARGS__) #define U64(...) \ u64 __VA_ARGS__; \ read(__VA_ARGS__) #define STR(...) \ string __VA_ARGS__; \ read(__VA_ARGS__) #define CHAR(...) \ char __VA_ARGS__; \ read(__VA_ARGS__) #define DBL(...) \ double __VA_ARGS__; \ read(__VA_ARGS__) #define VEC(type, name, size) \ vector<type> name(size); \ read(name) #define VV(type, name, h, w) \ vector<vector<type>> name(h, vector<type>(w)); \ read(name) void YES(bool t = 1) { print(t ? "YES" : "NO"); } void NO(bool t = 1) { YES(!t); } void Yes(bool t = 1) { print(t ? "Yes" : "No"); } void No(bool t = 1) { Yes(!t); } void yes(bool t = 1) { print(t ? "yes" : "no"); } void no(bool t = 1) { yes(!t); } #line 6 "test/5_atcoder/abc139f.test.cpp" #line 2 "geo/base.hpp" template <typename T> struct Point { T x, y; Point() : x(0), y(0) {} template <typename A, typename B> Point(A x, B y) : x(x), y(y) {} template <typename A, typename B> Point(pair<A, B> p) : x(p.fi), y(p.se) {} Point operator+=(const Point p) { x += p.x, y += p.y; return *this; } Point operator-=(const Point p) { x -= p.x, y -= p.y; return *this; } Point operator+(Point p) const { return {x + p.x, y + p.y}; } Point operator-(Point p) const { return {x - p.x, y - p.y}; } bool operator==(Point p) const { return x == p.x && y == p.y; } bool operator!=(Point p) const { return x != p.x || y != p.y; } Point operator-() const { return {-x, -y}; } Point operator*(T t) const { return {x * t, y * t}; } Point operator/(T t) const { return {x / t, y / t}; } bool operator<(Point p) const { if (x != p.x) return x < p.x; return y < p.y; } T dot(Point other) { return x * other.x + y * other.y; } T det(Point other) { return x * other.y - y * other.x; } double norm() { return sqrtl(x * x + y * y); } double angle() { return atan2(y, x); } Point rotate(double theta) { static_assert(!is_integral<T>::value); double c = cos(theta), s = sin(theta); return Point{c * x - s * y, s * x + c * y}; } }; #ifdef FASTIO template <typename T> void rd(Point<T> &p) { fastio::rd(p.x), fastio::rd(p.y); } template <typename T> void wt(Point<T> &p) { fastio::wt(p.x); fastio::wt(' '); fastio::wt(p.y); } #endif // A -> B -> C と進むときに、左に曲がるならば +1、右に曲がるならば -1 template <typename T> int ccw(Point<T> A, Point<T> B, Point<T> C) { T x = (B - A).det(C - A); if (x > 0) return 1; if (x < 0) return -1; return 0; } template <typename REAL, typename T, typename U> REAL dist(Point<T> A, Point<U> B) { REAL dx = REAL(A.x) - REAL(B.x); REAL dy = REAL(A.y) - REAL(B.y); return sqrt(dx * dx + dy * dy); } // ax+by+c template <typename T> struct Line { T a, b, c; Line(T a, T b, T c) : a(a), b(b), c(c) {} Line(Point<T> A, Point<T> B) { a = A.y - B.y, b = B.x - A.x, c = A.x * B.y - A.y * B.x; } Line(T x1, T y1, T x2, T y2) : Line(Point<T>(x1, y1), Point<T>(x2, y2)) {} template <typename U> U eval(Point<U> P) { return a * P.x + b * P.y + c; } template <typename U> T eval(U x, U y) { return a * x + b * y + c; } // 同じ直線が同じ a,b,c で表現されるようにする void normalize() { static_assert(is_same_v<T, int> || is_same_v<T, long long>); T g = gcd(gcd(abs(a), abs(b)), abs(c)); a /= g, b /= g, c /= g; if (b < 0) { a = -a, b = -b, c = -c; } if (b == 0 && a < 0) { a = -a, b = -b, c = -c; } } bool is_parallel(Line other) { return a * other.b - b * other.a == 0; } bool is_orthogonal(Line other) { return a * other.a + b * other.b == 0; } }; template <typename T> struct Segment { Point<T> A, B; Segment(Point<T> A, Point<T> B) : A(A), B(B) {} Segment(T x1, T y1, T x2, T y2) : Segment(Point<T>(x1, y1), Point<T>(x2, y2)) {} bool contain(Point<T> C) { T det = (C - A).det(B - A); if (det != 0) return 0; return (C - A).dot(B - A) >= 0 && (C - B).dot(A - B) >= 0; } Line<T> to_Line() { return Line(A, B); } }; template <typename REAL> struct Circle { Point<REAL> O; REAL r; Circle(Point<REAL> O, REAL r) : O(O), r(r) {} Circle(REAL x, REAL y, REAL r) : O(x, y), r(r) {} template <typename T> bool contain(Point<T> p) { REAL dx = p.x - O.x, dy = p.y - O.y; return dx * dx + dy * dy <= r * r; } }; #line 2 "geo/angle_sort.hpp" #line 4 "geo/angle_sort.hpp" // lower: -1, origin: 0, upper: 1 template <typename T> int lower_or_upper(Point<T>& p) { if (p.y != 0) return (p.y > 0 ? 1 : -1); if (p.x > 0) return -1; if (p.x < 0) return 1; return 0; } // -1, 0, 1 template <typename T> int angle_comp_3(Point<T>& L, Point<T>& R) { int a = lower_or_upper(L), b = lower_or_upper(R); if (a != b) return (a < b ? -1 : +1); T det = L.det(R); if (det > 0) return -1; if (det < 0) return 1; return 0; } // 偏角ソートに対する argsort template <typename T> vector<int> angle_sort(vector<Point<T>>& P) { vc<int> I(len(P)); FOR(i, len(P)) I[i] = i; sort(all(I), [&](auto& L, auto& R) -> bool { return angle_comp_3(P[L], P[R]) == -1; }); return I; } // 偏角ソートに対する argsort template <typename T> vector<int> angle_sort(vector<pair<T, T>>& P) { vc<Point<T>> tmp(len(P)); FOR(i, len(P)) tmp[i] = Point<T>(P[i]); return angle_sort<T>(tmp); } #line 3 "geo/max_norm_sum.hpp" // ベクトルの列が与えられる. 部分列を選んで,和の norm を最小化する. // 総和の座標の 2 乗和が SM でオーバーフローしないように注意せよ. // https://atcoder.jp/contests/abc139/tasks/abc139_f // https://codeforces.com/contest/1841/problem/F template <typename SM, typename T> pair<SM, vc<int>> max_norm_sum(vc<Point<T>> dat) { auto I = angle_sort(dat); { vc<int> J; for (auto&& i: I) { if (dat[i].x != 0 || dat[i].y != 0) J.eb(i); } swap(I, J); } dat = rearrange(dat, I); const int N = len(dat); if (N == 0) { return {0, {}}; } SM ANS = 0; pair<int, int> LR = {0, 0}; int L = 0, R = 1; Point<T> c = dat[0]; auto eval = [&]() -> SM { return SM(c.x) * c.x + SM(c.y) * c.y; }; if (chmax(ANS, eval())) LR = {L, R}; while (L < N) { Point<T>&A = dat[L], &B = dat[R % N]; if (R - L < N && (A.det(B) > 0 || (A.det(B) == 0 && A.dot(B) > 0))) { c = c + B; R++; if (chmax(ANS, eval())) LR = {L, R}; } else { c = c - A; L++; if (chmax(ANS, eval())) LR = {L, R}; } } vc<int> ids; FOR(i, LR.fi, LR.se) { ids.eb(I[i % N]); } return {ANS, ids}; } #line 8 "test/5_atcoder/abc139f.test.cpp" using P = Point<ll>; void solve() { LL(N); VEC(P, point, N); auto [val, I] = max_norm_sum<ll, ll>(point); ll x = 0, y = 0; for (auto&& i: I) x += point[i].x, y += point[i].y; assert(val == x * x + y * y); double ANS = sqrtl(val); print(ANS); } signed main() { solve(); return 0; }