This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub maspypy/library
#include "geo/max_norm_sum.hpp"
#include "geo/base.hpp" #include "geo/angle_sort.hpp" // ベクトルの列が与えられる. 部分列を選んで,和の norm を最小化する. // 総和の座標の 2 乗和が SM でオーバーフローしないように注意せよ. // https://atcoder.jp/contests/abc139/tasks/abc139_f // https://codeforces.com/contest/1841/problem/F template <typename SM, typename T> pair<SM, vc<int>> max_norm_sum(vc<Point<T>> dat) { auto I = angle_sort(dat); { vc<int> J; for (auto&& i: I) { if (dat[i].x != 0 || dat[i].y != 0) J.eb(i); } swap(I, J); } dat = rearrange(dat, I); const int N = len(dat); if (N == 0) { return {0, {}}; } SM ANS = 0; pair<int, int> LR = {0, 0}; int L = 0, R = 1; Point<T> c = dat[0]; auto eval = [&]() -> SM { return SM(c.x) * c.x + SM(c.y) * c.y; }; if (chmax(ANS, eval())) LR = {L, R}; while (L < N) { Point<T>&A = dat[L], &B = dat[R % N]; if (R - L < N && (A.det(B) > 0 || (A.det(B) == 0 && A.dot(B) > 0))) { c = c + B; R++; if (chmax(ANS, eval())) LR = {L, R}; } else { c = c - A; L++; if (chmax(ANS, eval())) LR = {L, R}; } } vc<int> ids; FOR(i, LR.fi, LR.se) { ids.eb(I[i % N]); } return {ANS, ids}; }
#line 2 "geo/base.hpp" template <typename T> struct Point { T x, y; Point() : x(0), y(0) {} template <typename A, typename B> Point(A x, B y) : x(x), y(y) {} template <typename A, typename B> Point(pair<A, B> p) : x(p.fi), y(p.se) {} Point operator+=(const Point p) { x += p.x, y += p.y; return *this; } Point operator-=(const Point p) { x -= p.x, y -= p.y; return *this; } Point operator+(Point p) const { return {x + p.x, y + p.y}; } Point operator-(Point p) const { return {x - p.x, y - p.y}; } bool operator==(Point p) const { return x == p.x && y == p.y; } bool operator!=(Point p) const { return x != p.x || y != p.y; } Point operator-() const { return {-x, -y}; } Point operator*(T t) const { return {x * t, y * t}; } Point operator/(T t) const { return {x / t, y / t}; } bool operator<(Point p) const { if (x != p.x) return x < p.x; return y < p.y; } T dot(const Point& other) const { return x * other.x + y * other.y; } T det(const Point& other) const { return x * other.y - y * other.x; } double norm() { return sqrtl(x * x + y * y); } double angle() { return atan2(y, x); } Point rotate(double theta) { static_assert(!is_integral<T>::value); double c = cos(theta), s = sin(theta); return Point{c * x - s * y, s * x + c * y}; } Point rot90(bool ccw) { return (ccw ? Point{-y, x} : Point{y, -x}); } }; #ifdef FASTIO template <typename T> void rd(Point<T>& p) { fastio::rd(p.x), fastio::rd(p.y); } template <typename T> void wt(Point<T>& p) { fastio::wt(p.x); fastio::wt(' '); fastio::wt(p.y); } #endif // A -> B -> C と進むときに、左に曲がるならば +1、右に曲がるならば -1 template <typename T> int ccw(Point<T> A, Point<T> B, Point<T> C) { T x = (B - A).det(C - A); if (x > 0) return 1; if (x < 0) return -1; return 0; } template <typename REAL, typename T, typename U> REAL dist(Point<T> A, Point<U> B) { REAL dx = REAL(A.x) - REAL(B.x); REAL dy = REAL(A.y) - REAL(B.y); return sqrt(dx * dx + dy * dy); } // ax+by+c template <typename T> struct Line { T a, b, c; Line(T a, T b, T c) : a(a), b(b), c(c) {} Line(Point<T> A, Point<T> B) { a = A.y - B.y, b = B.x - A.x, c = A.x * B.y - A.y * B.x; } Line(T x1, T y1, T x2, T y2) : Line(Point<T>(x1, y1), Point<T>(x2, y2)) {} template <typename U> U eval(Point<U> P) { return a * P.x + b * P.y + c; } template <typename U> T eval(U x, U y) { return a * x + b * y + c; } // 同じ直線が同じ a,b,c で表現されるようにする void normalize() { static_assert(is_same_v<T, int> || is_same_v<T, long long>); T g = gcd(gcd(abs(a), abs(b)), abs(c)); a /= g, b /= g, c /= g; if (b < 0) { a = -a, b = -b, c = -c; } if (b == 0 && a < 0) { a = -a, b = -b, c = -c; } } bool is_parallel(Line other) { return a * other.b - b * other.a == 0; } bool is_orthogonal(Line other) { return a * other.a + b * other.b == 0; } }; template <typename T> struct Segment { Point<T> A, B; Segment(Point<T> A, Point<T> B) : A(A), B(B) {} Segment(T x1, T y1, T x2, T y2) : Segment(Point<T>(x1, y1), Point<T>(x2, y2)) {} bool contain(Point<T> C) { T det = (C - A).det(B - A); if (det != 0) return 0; return (C - A).dot(B - A) >= 0 && (C - B).dot(A - B) >= 0; } Line<T> to_Line() { return Line(A, B); } }; template <typename REAL> struct Circle { Point<REAL> O; REAL r; Circle(Point<REAL> O, REAL r) : O(O), r(r) {} Circle(REAL x, REAL y, REAL r) : O(x, y), r(r) {} template <typename T> bool contain(Point<T> p) { REAL dx = p.x - O.x, dy = p.y - O.y; return dx * dx + dy * dy <= r * r; } }; #line 2 "geo/angle_sort.hpp" #line 4 "geo/angle_sort.hpp" // lower: -1, origin: 0, upper: 1, (-pi,pi] template <typename T> int lower_or_upper(const Point<T> &p) { if (p.y != 0) return (p.y > 0 ? 1 : -1); if (p.x > 0) return -1; if (p.x < 0) return 1; return 0; } // L<R:-1, L==R:0, L>R:1, (-pi,pi] template <typename T> int angle_comp_3(const Point<T> &L, const Point<T> &R) { int a = lower_or_upper(L), b = lower_or_upper(R); if (a != b) return (a < b ? -1 : +1); T det = L.det(R); if (det > 0) return -1; if (det < 0) return 1; return 0; } // 偏角ソートに対する argsort, (-pi,pi] template <typename T> vector<int> angle_sort(vector<Point<T>> &P) { vc<int> I(len(P)); FOR(i, len(P)) I[i] = i; sort(all(I), [&](auto &L, auto &R) -> bool { return angle_comp_3(P[L], P[R]) == -1; }); return I; } // 偏角ソートに対する argsort, (-pi,pi] template <typename T> vector<int> angle_sort(vector<pair<T, T>> &P) { vc<Point<T>> tmp(len(P)); FOR(i, len(P)) tmp[i] = Point<T>(P[i]); return angle_sort<T>(tmp); } #line 3 "geo/max_norm_sum.hpp" // ベクトルの列が与えられる. 部分列を選んで,和の norm を最小化する. // 総和の座標の 2 乗和が SM でオーバーフローしないように注意せよ. // https://atcoder.jp/contests/abc139/tasks/abc139_f // https://codeforces.com/contest/1841/problem/F template <typename SM, typename T> pair<SM, vc<int>> max_norm_sum(vc<Point<T>> dat) { auto I = angle_sort(dat); { vc<int> J; for (auto&& i: I) { if (dat[i].x != 0 || dat[i].y != 0) J.eb(i); } swap(I, J); } dat = rearrange(dat, I); const int N = len(dat); if (N == 0) { return {0, {}}; } SM ANS = 0; pair<int, int> LR = {0, 0}; int L = 0, R = 1; Point<T> c = dat[0]; auto eval = [&]() -> SM { return SM(c.x) * c.x + SM(c.y) * c.y; }; if (chmax(ANS, eval())) LR = {L, R}; while (L < N) { Point<T>&A = dat[L], &B = dat[R % N]; if (R - L < N && (A.det(B) > 0 || (A.det(B) == 0 && A.dot(B) > 0))) { c = c + B; R++; if (chmax(ANS, eval())) LR = {L, R}; } else { c = c - A; L++; if (chmax(ANS, eval())) LR = {L, R}; } } vc<int> ids; FOR(i, LR.fi, LR.se) { ids.eb(I[i % N]); } return {ANS, ids}; }