This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub maspypy/library
#define PROBLEM "https://yukicoder.me/problems/no/705" #include "my_template.hpp" #include "other/io.hpp" #include "convex/monge.hpp" void solve() { LL(N); VEC(ll, A, N); VEC(ll, X, N); VEC(ll, Y, N); auto f = [&](ll i, ll j) -> ll { ll a = A[j - 1]; ll x = X[i], y = Y[i]; ll dx = abs(a - x); ll dy = abs(y); return dx * dx * dx + dy * dy * dy; }; print(monge_shortest_path<ll>(N, f).back()); } signed main() { solve(); return 0; }
#line 1 "test/3_yukicoder/705.test.cpp" #define PROBLEM "https://yukicoder.me/problems/no/705" #line 1 "my_template.hpp" #if defined(LOCAL) #include <my_template_compiled.hpp> #else // https://codeforces.com/blog/entry/96344 #pragma GCC optimize("Ofast,unroll-loops") // いまの CF だとこれ入れると動かない? // #pragma GCC target("avx2,popcnt") #include <bits/stdc++.h> using namespace std; using ll = long long; using u8 = uint8_t; using u16 = uint16_t; using u32 = uint32_t; using u64 = uint64_t; using i128 = __int128; using u128 = unsigned __int128; using f128 = __float128; template <class T> constexpr T infty = 0; template <> constexpr int infty<int> = 1'010'000'000; template <> constexpr ll infty<ll> = 2'020'000'000'000'000'000; template <> constexpr u32 infty<u32> = infty<int>; template <> constexpr u64 infty<u64> = infty<ll>; template <> constexpr i128 infty<i128> = i128(infty<ll>) * 2'000'000'000'000'000'000; template <> constexpr double infty<double> = infty<ll>; template <> constexpr long double infty<long double> = infty<ll>; using pi = pair<ll, ll>; using vi = vector<ll>; template <class T> using vc = vector<T>; template <class T> using vvc = vector<vc<T>>; template <class T> using vvvc = vector<vvc<T>>; template <class T> using vvvvc = vector<vvvc<T>>; template <class T> using vvvvvc = vector<vvvvc<T>>; template <class T> using pq = priority_queue<T>; template <class T> using pqg = priority_queue<T, vector<T>, greater<T>>; #define vv(type, name, h, ...) vector<vector<type>> name(h, vector<type>(__VA_ARGS__)) #define vvv(type, name, h, w, ...) vector<vector<vector<type>>> name(h, vector<vector<type>>(w, vector<type>(__VA_ARGS__))) #define vvvv(type, name, a, b, c, ...) \ vector<vector<vector<vector<type>>>> name(a, vector<vector<vector<type>>>(b, vector<vector<type>>(c, vector<type>(__VA_ARGS__)))) // https://trap.jp/post/1224/ #define FOR1(a) for (ll _ = 0; _ < ll(a); ++_) #define FOR2(i, a) for (ll i = 0; i < ll(a); ++i) #define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i) #define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c)) #define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i) #define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i) #define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i) #define overload4(a, b, c, d, e, ...) e #define overload3(a, b, c, d, ...) d #define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__) #define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__) #define all(x) x.begin(), x.end() #define len(x) ll(x.size()) #define elif else if #define eb emplace_back #define mp make_pair #define mt make_tuple #define fi first #define se second #define stoi stoll int popcnt(int x) { return __builtin_popcount(x); } int popcnt(u32 x) { return __builtin_popcount(x); } int popcnt(ll x) { return __builtin_popcountll(x); } int popcnt(u64 x) { return __builtin_popcountll(x); } int popcnt_sgn(int x) { return (__builtin_parity(unsigned(x)) & 1 ? -1 : 1); } int popcnt_sgn(u32 x) { return (__builtin_parity(x) & 1 ? -1 : 1); } int popcnt_sgn(ll x) { return (__builtin_parityll(x) & 1 ? -1 : 1); } int popcnt_sgn(u64 x) { return (__builtin_parityll(x) & 1 ? -1 : 1); } // (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2) int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); } int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); } int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); } int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); } // (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2) int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); } int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); } int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); } int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); } template <typename T> T kth_bit(int k) { return T(1) << k; } template <typename T> bool has_kth_bit(T x, int k) { return x >> k & 1; } template <typename UINT> struct all_bit { struct iter { UINT s; iter(UINT s) : s(s) {} int operator*() const { return lowbit(s); } iter &operator++() { s &= s - 1; return *this; } bool operator!=(const iter) const { return s != 0; } }; UINT s; all_bit(UINT s) : s(s) {} iter begin() const { return iter(s); } iter end() const { return iter(0); } }; template <typename UINT> struct all_subset { static_assert(is_unsigned<UINT>::value); struct iter { UINT s, t; bool ed; iter(UINT s) : s(s), t(s), ed(0) {} int operator*() const { return s ^ t; } iter &operator++() { (t == 0 ? ed = 1 : t = (t - 1) & s); return *this; } bool operator!=(const iter) const { return !ed; } }; UINT s; all_subset(UINT s) : s(s) {} iter begin() const { return iter(s); } iter end() const { return iter(0); } }; template <typename T> T floor(T a, T b) { return a / b - (a % b && (a ^ b) < 0); } template <typename T> T ceil(T x, T y) { return floor(x + y - 1, y); } template <typename T> T bmod(T x, T y) { return x - y * floor(x, y); } template <typename T> pair<T, T> divmod(T x, T y) { T q = floor(x, y); return {q, x - q * y}; } template <typename T, typename U> T SUM(const vector<U> &A) { T sm = 0; for (auto &&a: A) sm += a; return sm; } #define MIN(v) *min_element(all(v)) #define MAX(v) *max_element(all(v)) #define LB(c, x) distance((c).begin(), lower_bound(all(c), (x))) #define UB(c, x) distance((c).begin(), upper_bound(all(c), (x))) #define UNIQUE(x) sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit() template <typename T> T POP(deque<T> &que) { T a = que.front(); que.pop_front(); return a; } template <typename T> T POP(pq<T> &que) { T a = que.top(); que.pop(); return a; } template <typename T> T POP(pqg<T> &que) { T a = que.top(); que.pop(); return a; } template <typename T> T POP(vc<T> &que) { T a = que.back(); que.pop_back(); return a; } template <typename F> ll binary_search(F check, ll ok, ll ng, bool check_ok = true) { if (check_ok) assert(check(ok)); while (abs(ok - ng) > 1) { auto x = (ng + ok) / 2; (check(x) ? ok : ng) = x; } return ok; } template <typename F> double binary_search_real(F check, double ok, double ng, int iter = 100) { FOR(iter) { double x = (ok + ng) / 2; (check(x) ? ok : ng) = x; } return (ok + ng) / 2; } template <class T, class S> inline bool chmax(T &a, const S &b) { return (a < b ? a = b, 1 : 0); } template <class T, class S> inline bool chmin(T &a, const S &b) { return (a > b ? a = b, 1 : 0); } // ? は -1 vc<int> s_to_vi(const string &S, char first_char) { vc<int> A(S.size()); FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); } return A; } template <typename T, typename U> vector<T> cumsum(vector<U> &A, int off = 1) { int N = A.size(); vector<T> B(N + 1); FOR(i, N) { B[i + 1] = B[i] + A[i]; } if (off == 0) B.erase(B.begin()); return B; } // stable sort template <typename T> vector<int> argsort(const vector<T> &A) { vector<int> ids(len(A)); iota(all(ids), 0); sort(all(ids), [&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); }); return ids; } // A[I[0]], A[I[1]], ... template <typename T> vc<T> rearrange(const vc<T> &A, const vc<int> &I) { vc<T> B(len(I)); FOR(i, len(I)) B[i] = A[I[i]]; return B; } template <typename T, typename... Vectors> void concat(vc<T> &first, const Vectors &... others) { vc<T> &res = first; (res.insert(res.end(), others.begin(), others.end()), ...); } #endif #line 1 "other/io.hpp" #define FASTIO #include <unistd.h> // https://judge.yosupo.jp/submission/21623 namespace fastio { static constexpr uint32_t SZ = 1 << 17; char ibuf[SZ]; char obuf[SZ]; char out[100]; // pointer of ibuf, obuf uint32_t pil = 0, pir = 0, por = 0; struct Pre { char num[10000][4]; constexpr Pre() : num() { for (int i = 0; i < 10000; i++) { int n = i; for (int j = 3; j >= 0; j--) { num[i][j] = n % 10 | '0'; n /= 10; } } } } constexpr pre; inline void load() { memcpy(ibuf, ibuf + pil, pir - pil); pir = pir - pil + fread(ibuf + pir - pil, 1, SZ - pir + pil, stdin); pil = 0; if (pir < SZ) ibuf[pir++] = '\n'; } inline void flush() { fwrite(obuf, 1, por, stdout); por = 0; } void rd(char &c) { do { if (pil + 1 > pir) load(); c = ibuf[pil++]; } while (isspace(c)); } void rd(string &x) { x.clear(); char c; do { if (pil + 1 > pir) load(); c = ibuf[pil++]; } while (isspace(c)); do { x += c; if (pil == pir) load(); c = ibuf[pil++]; } while (!isspace(c)); } template <typename T> void rd_real(T &x) { string s; rd(s); x = stod(s); } template <typename T> void rd_integer(T &x) { if (pil + 100 > pir) load(); char c; do c = ibuf[pil++]; while (c < '-'); bool minus = 0; if constexpr (is_signed<T>::value || is_same_v<T, i128>) { if (c == '-') { minus = 1, c = ibuf[pil++]; } } x = 0; while ('0' <= c) { x = x * 10 + (c & 15), c = ibuf[pil++]; } if constexpr (is_signed<T>::value || is_same_v<T, i128>) { if (minus) x = -x; } } void rd(int &x) { rd_integer(x); } void rd(ll &x) { rd_integer(x); } void rd(i128 &x) { rd_integer(x); } void rd(u32 &x) { rd_integer(x); } void rd(u64 &x) { rd_integer(x); } void rd(u128 &x) { rd_integer(x); } void rd(double &x) { rd_real(x); } void rd(long double &x) { rd_real(x); } void rd(f128 &x) { rd_real(x); } template <class T, class U> void rd(pair<T, U> &p) { return rd(p.first), rd(p.second); } template <size_t N = 0, typename T> void rd_tuple(T &t) { if constexpr (N < std::tuple_size<T>::value) { auto &x = std::get<N>(t); rd(x); rd_tuple<N + 1>(t); } } template <class... T> void rd(tuple<T...> &tpl) { rd_tuple(tpl); } template <size_t N = 0, typename T> void rd(array<T, N> &x) { for (auto &d: x) rd(d); } template <class T> void rd(vc<T> &x) { for (auto &d: x) rd(d); } void read() {} template <class H, class... T> void read(H &h, T &... t) { rd(h), read(t...); } void wt(const char c) { if (por == SZ) flush(); obuf[por++] = c; } void wt(const string s) { for (char c: s) wt(c); } void wt(const char *s) { size_t len = strlen(s); for (size_t i = 0; i < len; i++) wt(s[i]); } template <typename T> void wt_integer(T x) { if (por > SZ - 100) flush(); if (x < 0) { obuf[por++] = '-', x = -x; } int outi; for (outi = 96; x >= 10000; outi -= 4) { memcpy(out + outi, pre.num[x % 10000], 4); x /= 10000; } if (x >= 1000) { memcpy(obuf + por, pre.num[x], 4); por += 4; } else if (x >= 100) { memcpy(obuf + por, pre.num[x] + 1, 3); por += 3; } else if (x >= 10) { int q = (x * 103) >> 10; obuf[por] = q | '0'; obuf[por + 1] = (x - q * 10) | '0'; por += 2; } else obuf[por++] = x | '0'; memcpy(obuf + por, out + outi + 4, 96 - outi); por += 96 - outi; } template <typename T> void wt_real(T x) { ostringstream oss; oss << fixed << setprecision(15) << double(x); string s = oss.str(); wt(s); } void wt(int x) { wt_integer(x); } void wt(ll x) { wt_integer(x); } void wt(i128 x) { wt_integer(x); } void wt(u32 x) { wt_integer(x); } void wt(u64 x) { wt_integer(x); } void wt(u128 x) { wt_integer(x); } void wt(double x) { wt_real(x); } void wt(long double x) { wt_real(x); } void wt(f128 x) { wt_real(x); } template <class T, class U> void wt(const pair<T, U> val) { wt(val.first); wt(' '); wt(val.second); } template <size_t N = 0, typename T> void wt_tuple(const T t) { if constexpr (N < std::tuple_size<T>::value) { if constexpr (N > 0) { wt(' '); } const auto x = std::get<N>(t); wt(x); wt_tuple<N + 1>(t); } } template <class... T> void wt(tuple<T...> tpl) { wt_tuple(tpl); } template <class T, size_t S> void wt(const array<T, S> val) { auto n = val.size(); for (size_t i = 0; i < n; i++) { if (i) wt(' '); wt(val[i]); } } template <class T> void wt(const vector<T> val) { auto n = val.size(); for (size_t i = 0; i < n; i++) { if (i) wt(' '); wt(val[i]); } } void print() { wt('\n'); } template <class Head, class... Tail> void print(Head &&head, Tail &&... tail) { wt(head); if (sizeof...(Tail)) wt(' '); print(forward<Tail>(tail)...); } // gcc expansion. called automaticall after main. void __attribute__((destructor)) _d() { flush(); } } // namespace fastio using fastio::read; using fastio::print; using fastio::flush; #if defined(LOCAL) #define SHOW(...) SHOW_IMPL(__VA_ARGS__, SHOW6, SHOW5, SHOW4, SHOW3, SHOW2, SHOW1)(__VA_ARGS__) #define SHOW_IMPL(_1, _2, _3, _4, _5, _6, NAME, ...) NAME #define SHOW1(x) print(#x, "=", (x)), flush() #define SHOW2(x, y) print(#x, "=", (x), #y, "=", (y)), flush() #define SHOW3(x, y, z) print(#x, "=", (x), #y, "=", (y), #z, "=", (z)), flush() #define SHOW4(x, y, z, w) print(#x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w)), flush() #define SHOW5(x, y, z, w, v) print(#x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w), #v, "=", (v)), flush() #define SHOW6(x, y, z, w, v, u) print(#x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w), #v, "=", (v), #u, "=", (u)), flush() #else #define SHOW(...) #endif #define INT(...) \ int __VA_ARGS__; \ read(__VA_ARGS__) #define LL(...) \ ll __VA_ARGS__; \ read(__VA_ARGS__) #define U32(...) \ u32 __VA_ARGS__; \ read(__VA_ARGS__) #define U64(...) \ u64 __VA_ARGS__; \ read(__VA_ARGS__) #define STR(...) \ string __VA_ARGS__; \ read(__VA_ARGS__) #define CHAR(...) \ char __VA_ARGS__; \ read(__VA_ARGS__) #define DBL(...) \ double __VA_ARGS__; \ read(__VA_ARGS__) #define VEC(type, name, size) \ vector<type> name(size); \ read(name) #define VV(type, name, h, w) \ vector<vector<type>> name(h, vector<type>(w)); \ read(name) void YES(bool t = 1) { print(t ? "YES" : "NO"); } void NO(bool t = 1) { YES(!t); } void Yes(bool t = 1) { print(t ? "Yes" : "No"); } void No(bool t = 1) { Yes(!t); } void yes(bool t = 1) { print(t ? "yes" : "no"); } void no(bool t = 1) { yes(!t); } void YA(bool t = 1) { print(t ? "YA" : "TIDAK"); } void TIDAK(bool t = 1) { YES(!t); } #line 2 "convex/larsch.hpp" // https://noshi91.github.io/Library/algorithm/larsch.cpp.html template <class T> class LARSCH { struct reduce_row; struct reduce_col; struct reduce_row { int n; std::function<T(int, int)> f; int cur_row; int state; std::unique_ptr<reduce_col> rec; reduce_row(int n_) : n(n_), f(), cur_row(0), state(0), rec() { const int m = n / 2; if (m != 0) { rec = std::make_unique<reduce_col>(m); } } void set_f(std::function<T(int, int)> f_) { f = f_; if (rec) { rec->set_f([&](int i, int j) -> T { return f(2 * i + 1, j); }); } } int get_argmin() { const int cur_row_ = cur_row; cur_row += 1; if (cur_row_ % 2 == 0) { const int prev_argmin = state; const int next_argmin = [&]() { if (cur_row_ + 1 == n) { return n - 1; } else { return rec->get_argmin(); } }(); state = next_argmin; int ret = prev_argmin; for (int j = prev_argmin + 1; j <= next_argmin; j += 1) { if (f(cur_row_, ret) > f(cur_row_, j)) { ret = j; } } return ret; } else { if (f(cur_row_, state) <= f(cur_row_, cur_row_)) { return state; } else { return cur_row_; } } } }; struct reduce_col { int n; std::function<T(int, int)> f; int cur_row; std::vector<int> cols; reduce_row rec; reduce_col(int n_) : n(n_), f(), cur_row(0), cols(), rec(n) {} void set_f(std::function<T(int, int)> f_) { f = f_; rec.set_f([&](int i, int j) -> T { return f(i, cols[j]); }); } int get_argmin() { const int cur_row_ = cur_row; cur_row += 1; const auto cs = [&]() -> std::vector<int> { if (cur_row_ == 0) { return {{0}}; } else { return {{2 * cur_row_ - 1, 2 * cur_row_}}; } }(); for (const int j: cs) { while ([&]() { const int size = cols.size(); return size != cur_row_ && f(size - 1, cols.back()) > f(size - 1, j); }()) { cols.pop_back(); } if (int(cols.size()) != n) { cols.push_back(j); } } return cols[rec.get_argmin()]; } }; std::unique_ptr<reduce_row> base; public: LARSCH(int n, std::function<T(int, int)> f) : base(std::make_unique<reduce_row>(n)) { base->set_f(f); } int get_argmin() { return base->get_argmin(); } }; #line 2 "convex/smawk.hpp" // select(i,j,k) は (i,j) -> (i,k) を行うかどうか // 残念ながら monotone minima より高速な場合が存在しない説がある // https://codeforces.com/contest/1423/problem/M template <typename F> vc<int> smawk(int H, int W, F select) { auto dfs = [&](auto& dfs, vc<int> X, vc<int> Y) -> vc<int> { int N = len(X); if (N == 0) return {}; vc<int> YY; for (auto&& y: Y) { while (len(YY)) { int py = YY.back(), x = X[len(YY) - 1]; if (!select(x, py, y)) break; YY.pop_back(); } if (len(YY) < len(X)) YY.eb(y); } vc<int> XX; FOR(i, 1, len(X), 2) XX.eb(X[i]); vc<int> II = dfs(dfs, XX, YY); vc<int> I(N); FOR(i, len(II)) I[i + i + 1] = II[i]; int p = 0; FOR(i, 0, N, 2) { int LIM = (i + 1 == N ? Y.back() : I[i + 1]); int best = Y[p]; while (Y[p] < LIM) { ++p; if (select(X[i], best, Y[p])) best = Y[p]; } I[i] = best; } return I; }; vc<int> X(H), Y(W); iota(all(X), 0), iota(all(Y), 0); return dfs(dfs, X, Y); } #line 1 "other/fibonacci_search.hpp" // returns: {fx, x} // [L, R) での極小値をひとつ求める、単峰は不要 template <typename T, bool MINIMIZE, typename F> pair<T, ll> fibonacci_search(F f, ll L, ll R) { assert(L < R); --R; ll a = L, b = L + 1, c = L + 2, d = L + 3; int n = 0; while (d < R) { b = c, c = d, d = b + c - a, ++n; } auto get = [&](ll x) -> T { if (R < x) return infty<T>; return (MINIMIZE ? f(x) : -f(x)); }; T ya = get(a), yb = get(b), yc = get(c), yd = get(d); // この中で極小ならば全体でも極小、を維持する FOR(n) { if (yb <= yc) { d = c, c = b, b = a + d - c; yd = yc, yc = yb, yb = get(b); } else { a = b, b = c, c = a + d - b; ya = yb, yb = yc, yc = get(c); } } ll x = a; T y = ya; if (chmin(y, yb)) x = b; if (chmin(y, yc)) x = c; if (chmin(y, yd)) x = d; if (MINIMIZE) return {y, x}; return {-y, x}; } #line 4 "convex/monge.hpp" // 定義域 [0, N] の範囲で f の monge 性を確認 template <typename T, typename F> bool check_monge(int N, F f) { FOR(l, N + 1) FOR(k, l) FOR(j, k) FOR(i, j) { T lhs = f(i, l) + f(j, k); T rhs = f(i, k) + f(j, l); if (lhs < rhs) { print("monge ng"); print(i, j, k, l, f(i, k), f(i, l), f(j, k), f(j, l), lhs, rhs); return false; } } print("monge ok"); return true; } // newdp[j] = min (dp[i] + f(i,j)) template <typename T, typename F> vc<T> monge_dp_update(int N, vc<T>& dp, F f) { assert(len(dp) == N + 1); auto select = [&](int i, int j, int k) -> int { if (i <= k) return j; return (dp[j] + f(j, i) > dp[k] + f(k, i) ? k : j); }; vc<int> I = SMAWK(N + 1, N + 1, select); vc<T> newdp(N + 1, infty<T>); FOR(j, N + 1) { int i = I[j]; chmin(newdp[j], dp[i] + f(i, j)); } return newdp; } // 遷移回数を問わない場合 template <typename T, typename F> vc<T> monge_shortest_path(int N, F f) { vc<T> dp(N + 1, infty<T>); dp[0] = 0; LARSCH<T> larsch(N, [&](int i, int j) -> T { ++i; if (i <= j) return infty<T>; return dp[j] + f(j, i); }); FOR(r, 1, N + 1) { int l = larsch.get_argmin(); dp[r] = dp[l] + f(l, r); } return dp; } // https://noshi91.github.io/algorithm-encyclopedia/d-edge-shortest-path-monge // |f| の上限 f_lim も渡す // ・larsch が結構重いので、自前で dp できるならその方がよい // ・複数の d で計算するとき:同じ lambda // に対する計算をメモ化しておくと定数倍高速? ・ABC305 template <typename T, typename F> T monge_shortest_path_d_edge(int N, int d, T f_lim, F f) { assert(d <= N); auto calc_L = [&](T lambda) -> T { auto cost = [&](int frm, int to) -> T { return f(frm, to) + lambda; }; vc<T> dp = monge_shortest_path<T>(N, cost); return dp[N] - lambda * d; }; auto [x, fx] = fibonacci_search<T, false>(calc_L, -3 * f_lim, 3 * f_lim + 1); return fx; } // https://topcoder-g-hatena-ne-jp.jag-icpc.org/spaghetti_source/20120915/1347668163.html // Prop 1 // 上三角 monge A, B // C[i][j] = min_k (A[i][k] + B[k][j]) template <typename T, typename F1, typename F2> vvc<T> monge_matrix_product(int N, F1 A, F2 B) { vv(T, C, N + 1, N + 1, infty<T>); vc<int> K(N + 1); FOR(i, N + 1) C[i][i] = A(i, i) + B(i, i), K[i] = i; FOR(s, 1, N + 1) { vc<int> newK(N + 1 - s); FOR(i, N + 1 - s) { int j = i + s; int p = K[i], q = K[i + 1]; FOR(k, p, q + 1) if (chmin(C[i][j], A(i, k) + B(k, j))) newK[i] = k; } swap(K, newK); } return C; } #line 5 "test/3_yukicoder/705.test.cpp" void solve() { LL(N); VEC(ll, A, N); VEC(ll, X, N); VEC(ll, Y, N); auto f = [&](ll i, ll j) -> ll { ll a = A[j - 1]; ll x = X[i], y = Y[i]; ll dx = abs(a - x); ll dy = abs(y); return dx * dx * dx + dy * dy * dy; }; print(monge_shortest_path<ll>(N, f).back()); } signed main() { solve(); return 0; }