This documentation is automatically generated by online-judge-tools/verification-helper
#include "convex/monge.hpp"
#include "convex/larsch.hpp"
#include "convex/smawk.hpp"
#include "other/fibonacci_search.hpp"
// 定義域 [0, N] の範囲で f の monge 性を確認
template <typename T, typename F>
bool check_monge(int N, F f) {
FOR(l, N + 1) FOR(k, l) FOR(j, k) FOR(i, j) {
T lhs = f(i, l) + f(j, k);
T rhs = f(i, k) + f(j, l);
if (lhs < rhs) {
print("monge ng");
print(i, j, k, l, f(i, k), f(i, l), f(j, k), f(j, l), lhs, rhs);
return false;
}
}
print("monge ok");
return true;
}
// newdp[j] = min (dp[i] + f(i,j))
template <typename T, typename F>
vc<T> monge_dp_update(int N, vc<T>& dp, F f) {
assert(len(dp) == N + 1);
auto select = [&](int i, int j, int k) -> int {
if (i <= k) return j;
return (dp[j] + f(j, i) > dp[k] + f(k, i) ? k : j);
};
vc<int> I = SMAWK(N + 1, N + 1, select);
vc<T> newdp(N + 1, infty<T>);
FOR(j, N + 1) {
int i = I[j];
chmin(newdp[j], dp[i] + f(i, j));
}
return newdp;
}
// 遷移回数を問わない場合
template <typename T, typename F>
vc<T> monge_shortest_path(int N, F f) {
vc<T> dp(N + 1, infty<T>);
dp[0] = 0;
LARSCH<T> larsch(N, [&](int i, int j) -> T {
++i;
if (i <= j) return infty<T>;
return dp[j] + f(j, i);
});
FOR(r, 1, N + 1) {
int l = larsch.get_argmin();
dp[r] = dp[l] + f(l, r);
}
return dp;
}
// https://noshi91.github.io/algorithm-encyclopedia/d-edge-shortest-path-monge
// |f| の上限 f_lim も渡す
// ・larsch が結構重いので、自前で dp できるならその方がよい
// ・複数の d で計算するとき:同じ lambda
// に対する計算をメモ化しておくと定数倍高速? ・ABC305
template <typename T, typename F>
T monge_shortest_path_d_edge(int N, int d, T f_lim, F f) {
assert(d <= N);
auto calc_L = [&](T lambda) -> T {
auto cost = [&](int frm, int to) -> T { return f(frm, to) + lambda; };
vc<T> dp = monge_shortest_path<T>(N, cost);
return dp[N] - lambda * d;
};
auto [x, fx] = fibonacci_search<T, false>(calc_L, -3 * f_lim, 3 * f_lim + 1);
return fx;
}
// https://topcoder-g-hatena-ne-jp.jag-icpc.org/spaghetti_source/20120915/1347668163.html
// Prop 1
// 上三角 monge A, B
// C[i][j] = min_k (A[i][k] + B[k][j])
template <typename T, typename F1, typename F2>
vvc<T> monge_matrix_product(int N, F1 A, F2 B) {
vv(T, C, N + 1, N + 1, infty<T>);
vc<int> K(N + 1);
FOR(i, N + 1) C[i][i] = A(i, i) + B(i, i), K[i] = i;
FOR(s, 1, N + 1) {
vc<int> newK(N + 1 - s);
FOR(i, N + 1 - s) {
int j = i + s;
int p = K[i], q = K[i + 1];
FOR(k, p, q + 1) if (chmin(C[i][j], A(i, k) + B(k, j))) newK[i] = k;
}
swap(K, newK);
}
return C;
}
#line 2 "convex/larsch.hpp"
// https://noshi91.github.io/Library/algorithm/larsch.cpp.html
template <class T>
class LARSCH {
struct reduce_row;
struct reduce_col;
struct reduce_row {
int n;
std::function<T(int, int)> f;
int cur_row;
int state;
std::unique_ptr<reduce_col> rec;
reduce_row(int n_) : n(n_), f(), cur_row(0), state(0), rec() {
const int m = n / 2;
if (m != 0) { rec = std::make_unique<reduce_col>(m); }
}
void set_f(std::function<T(int, int)> f_) {
f = f_;
if (rec) {
rec->set_f([&](int i, int j) -> T { return f(2 * i + 1, j); });
}
}
int get_argmin() {
const int cur_row_ = cur_row;
cur_row += 1;
if (cur_row_ % 2 == 0) {
const int prev_argmin = state;
const int next_argmin = [&]() {
if (cur_row_ + 1 == n) {
return n - 1;
} else {
return rec->get_argmin();
}
}();
state = next_argmin;
int ret = prev_argmin;
for (int j = prev_argmin + 1; j <= next_argmin; j += 1) {
if (f(cur_row_, ret) > f(cur_row_, j)) { ret = j; }
}
return ret;
} else {
if (f(cur_row_, state) <= f(cur_row_, cur_row_)) {
return state;
} else {
return cur_row_;
}
}
}
};
struct reduce_col {
int n;
std::function<T(int, int)> f;
int cur_row;
std::vector<int> cols;
reduce_row rec;
reduce_col(int n_) : n(n_), f(), cur_row(0), cols(), rec(n) {}
void set_f(std::function<T(int, int)> f_) {
f = f_;
rec.set_f([&](int i, int j) -> T { return f(i, cols[j]); });
}
int get_argmin() {
const int cur_row_ = cur_row;
cur_row += 1;
const auto cs = [&]() -> std::vector<int> {
if (cur_row_ == 0) {
return {{0}};
} else {
return {{2 * cur_row_ - 1, 2 * cur_row_}};
}
}();
for (const int j: cs) {
while ([&]() {
const int size = cols.size();
return size != cur_row_ && f(size - 1, cols.back()) > f(size - 1, j);
}()) {
cols.pop_back();
}
if (int(cols.size()) != n) { cols.push_back(j); }
}
return cols[rec.get_argmin()];
}
};
std::unique_ptr<reduce_row> base;
public:
LARSCH(int n, std::function<T(int, int)> f)
: base(std::make_unique<reduce_row>(n)) {
base->set_f(f);
}
int get_argmin() { return base->get_argmin(); }
};
#line 2 "convex/smawk.hpp"
// select(i,j,k) は (i,j) -> (i,k) を行うかどうか
// 残念ながら monotone minima より高速な場合が存在しない説がある
// https://codeforces.com/contest/1423/problem/M
template <typename F>
vc<int> smawk(int H, int W, F select) {
auto dfs = [&](auto& dfs, vc<int> X, vc<int> Y) -> vc<int> {
int N = len(X);
if (N == 0) return {};
vc<int> YY;
for (auto&& y: Y) {
while (len(YY)) {
int py = YY.back(), x = X[len(YY) - 1];
if (!select(x, py, y)) break;
YY.pop_back();
}
if (len(YY) < len(X)) YY.eb(y);
}
vc<int> XX;
FOR(i, 1, len(X), 2) XX.eb(X[i]);
vc<int> II = dfs(dfs, XX, YY);
vc<int> I(N);
FOR(i, len(II)) I[i + i + 1] = II[i];
int p = 0;
FOR(i, 0, N, 2) {
int LIM = (i + 1 == N ? Y.back() : I[i + 1]);
int best = Y[p];
while (Y[p] < LIM) {
++p;
if (select(X[i], best, Y[p])) best = Y[p];
}
I[i] = best;
}
return I;
};
vc<int> X(H), Y(W);
iota(all(X), 0), iota(all(Y), 0);
return dfs(dfs, X, Y);
}
#line 1 "other/fibonacci_search.hpp"
// [L, R) での極小値をひとつ求める、単峰は不要
template <typename T, bool MINIMIZE, typename F>
pair<ll, T> fibonacci_search(F f, ll L, ll R) {
assert(L < R);
--R;
ll a = L, b = L + 1, c = L + 2, d = L + 3;
int n = 0;
while (d < R) { b = c, c = d, d = b + c - a, ++n; }
auto get = [&](ll x) -> T {
if (R < x) return infty<T>;
return (MINIMIZE ? f(x) : -f(x));
};
T ya = get(a), yb = get(b), yc = get(c), yd = get(d);
// この中で極小ならば全体でも極小、を維持する
FOR(n) {
if (yb <= yc) {
d = c, c = b, b = a + d - c;
yd = yc, yc = yb, yb = get(b);
} else {
a = b, b = c, c = a + d - b;
ya = yb, yb = yc, yc = get(c);
}
}
ll x = a;
T y = ya;
if (chmin(y, yb)) x = b;
if (chmin(y, yc)) x = c;
if (chmin(y, yd)) x = d;
if (MINIMIZE) return {x, y};
return {x, -y};
}
#line 4 "convex/monge.hpp"
// 定義域 [0, N] の範囲で f の monge 性を確認
template <typename T, typename F>
bool check_monge(int N, F f) {
FOR(l, N + 1) FOR(k, l) FOR(j, k) FOR(i, j) {
T lhs = f(i, l) + f(j, k);
T rhs = f(i, k) + f(j, l);
if (lhs < rhs) {
print("monge ng");
print(i, j, k, l, f(i, k), f(i, l), f(j, k), f(j, l), lhs, rhs);
return false;
}
}
print("monge ok");
return true;
}
// newdp[j] = min (dp[i] + f(i,j))
template <typename T, typename F>
vc<T> monge_dp_update(int N, vc<T>& dp, F f) {
assert(len(dp) == N + 1);
auto select = [&](int i, int j, int k) -> int {
if (i <= k) return j;
return (dp[j] + f(j, i) > dp[k] + f(k, i) ? k : j);
};
vc<int> I = SMAWK(N + 1, N + 1, select);
vc<T> newdp(N + 1, infty<T>);
FOR(j, N + 1) {
int i = I[j];
chmin(newdp[j], dp[i] + f(i, j));
}
return newdp;
}
// 遷移回数を問わない場合
template <typename T, typename F>
vc<T> monge_shortest_path(int N, F f) {
vc<T> dp(N + 1, infty<T>);
dp[0] = 0;
LARSCH<T> larsch(N, [&](int i, int j) -> T {
++i;
if (i <= j) return infty<T>;
return dp[j] + f(j, i);
});
FOR(r, 1, N + 1) {
int l = larsch.get_argmin();
dp[r] = dp[l] + f(l, r);
}
return dp;
}
// https://noshi91.github.io/algorithm-encyclopedia/d-edge-shortest-path-monge
// |f| の上限 f_lim も渡す
// ・larsch が結構重いので、自前で dp できるならその方がよい
// ・複数の d で計算するとき:同じ lambda
// に対する計算をメモ化しておくと定数倍高速? ・ABC305
template <typename T, typename F>
T monge_shortest_path_d_edge(int N, int d, T f_lim, F f) {
assert(d <= N);
auto calc_L = [&](T lambda) -> T {
auto cost = [&](int frm, int to) -> T { return f(frm, to) + lambda; };
vc<T> dp = monge_shortest_path<T>(N, cost);
return dp[N] - lambda * d;
};
auto [x, fx] = fibonacci_search<T, false>(calc_L, -3 * f_lim, 3 * f_lim + 1);
return fx;
}
// https://topcoder-g-hatena-ne-jp.jag-icpc.org/spaghetti_source/20120915/1347668163.html
// Prop 1
// 上三角 monge A, B
// C[i][j] = min_k (A[i][k] + B[k][j])
template <typename T, typename F1, typename F2>
vvc<T> monge_matrix_product(int N, F1 A, F2 B) {
vv(T, C, N + 1, N + 1, infty<T>);
vc<int> K(N + 1);
FOR(i, N + 1) C[i][i] = A(i, i) + B(i, i), K[i] = i;
FOR(s, 1, N + 1) {
vc<int> newK(N + 1 - s);
FOR(i, N + 1 - s) {
int j = i + s;
int p = K[i], q = K[i + 1];
FOR(k, p, q + 1) if (chmin(C[i][j], A(i, k) + B(k, j))) newK[i] = k;
}
swap(K, newK);
}
return C;
}