This documentation is automatically generated by online-judge-tools/verification-helper
#define PROBLEM "https://judge.yosupo.jp/problem/point_set_range_sort_range_composite"
#include "my_template.hpp"
#include "other/io.hpp"
#include "ds/segtree/sortable_segtree.hpp"
#include "alg/monoid/affine.hpp"
#include "mod/modint.hpp"
using mint = modint998;
void solve() {
// クエリ先読みする方
using AFF = Monoid_Affine<mint>;
LL(N, Q);
vc<int> key(N);
vc<pair<mint, mint>> seg_raw(N);
FOR(i, N) { read(key[i]), read(seg_raw[i]); }
vc<int> all_key = key;
using QT = tuple<int, int, int, int, int>;
vc<QT> query(Q);
FOR(q, Q) {
LL(t);
if (t == 0) {
LL(i, p, a, b);
query[q] = {t, i, p, a, b};
all_key.eb(p);
}
if (t == 1) {
LL(l, r, x);
query[q] = {t, l, r, x, 0};
}
if (t == 2 || t == 3) {
LL(l, r);
query[q] = {t, l, r, 0, 0};
}
}
UNIQUE(all_key);
for (auto&& k: key) k = LB(all_key, k);
Sortable_SegTree<AFF> seg(4000000, len(all_key), key, seg_raw);
for (auto&& [t, a, b, c, d]: query) {
if (t == 0) {
b = LB(all_key, b);
seg.set(a, b, {mint(c), mint(d)});
}
if (t == 1) {
auto f = seg.prod(a, b);
print(AFF::eval(f, c));
}
if (t == 2) { seg.sort_inc(a, b); }
if (t == 3) { seg.sort_dec(a, b); }
}
}
signed main() {
cin.tie(nullptr);
ios::sync_with_stdio(false);
cout << setprecision(15);
ll T = 1;
FOR(T) solve();
return 0;
}
#line 1 "test/2_library_checker/data_structure/sort_segtree_1.test.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/point_set_range_sort_range_composite"
#line 1 "my_template.hpp"
#if defined(LOCAL)
#include <my_template_compiled.hpp>
#else
// https://codeforces.com/blog/entry/96344
// https://codeforces.com/blog/entry/126772?#comment-1154880
#include <bits/allocator.h>
#pragma GCC optimize("Ofast,unroll-loops")
#pragma GCC target("avx2,popcnt")
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using u8 = uint8_t;
using u16 = uint16_t;
using u32 = uint32_t;
using u64 = uint64_t;
using i128 = __int128;
using u128 = unsigned __int128;
using f128 = __float128;
template <class T>
constexpr T infty = 0;
template <>
constexpr int infty<int> = 1'010'000'000;
template <>
constexpr ll infty<ll> = 2'020'000'000'000'000'000;
template <>
constexpr u32 infty<u32> = infty<int>;
template <>
constexpr u64 infty<u64> = infty<ll>;
template <>
constexpr i128 infty<i128> = i128(infty<ll>) * 2'000'000'000'000'000'000;
template <>
constexpr double infty<double> = infty<ll>;
template <>
constexpr long double infty<long double> = infty<ll>;
using pi = pair<ll, ll>;
using vi = vector<ll>;
template <class T>
using vc = vector<T>;
template <class T>
using vvc = vector<vc<T>>;
template <class T>
using vvvc = vector<vvc<T>>;
template <class T>
using vvvvc = vector<vvvc<T>>;
template <class T>
using vvvvvc = vector<vvvvc<T>>;
template <class T>
using pq = priority_queue<T>;
template <class T>
using pqg = priority_queue<T, vector<T>, greater<T>>;
#define vv(type, name, h, ...) vector<vector<type>> name(h, vector<type>(__VA_ARGS__))
#define vvv(type, name, h, w, ...) vector<vector<vector<type>>> name(h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))
#define vvvv(type, name, a, b, c, ...) \
vector<vector<vector<vector<type>>>> name(a, vector<vector<vector<type>>>(b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))
// https://trap.jp/post/1224/
#define FOR1(a) for (ll _ = 0; _ < ll(a); ++_)
#define FOR2(i, a) for (ll i = 0; i < ll(a); ++i)
#define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i)
#define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c))
#define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i)
#define overload4(a, b, c, d, e, ...) e
#define overload3(a, b, c, d, ...) d
#define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__)
#define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__)
#define all(x) x.begin(), x.end()
#define len(x) ll(x.size())
#define elif else if
#define eb emplace_back
#define mp make_pair
#define mt make_tuple
#define fi first
#define se second
#define stoi stoll
int popcnt(int x) { return __builtin_popcount(x); }
int popcnt(u32 x) { return __builtin_popcount(x); }
int popcnt(ll x) { return __builtin_popcountll(x); }
int popcnt(u64 x) { return __builtin_popcountll(x); }
int popcnt_sgn(int x) { return (__builtin_parity(unsigned(x)) & 1 ? -1 : 1); }
int popcnt_sgn(u32 x) { return (__builtin_parity(x) & 1 ? -1 : 1); }
int popcnt_sgn(ll x) { return (__builtin_parityll(x) & 1 ? -1 : 1); }
int popcnt_sgn(u64 x) { return (__builtin_parityll(x) & 1 ? -1 : 1); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2)
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2)
int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
template <typename T>
T kth_bit(int k) {
return T(1) << k;
}
template <typename T>
bool has_kth_bit(T x, int k) {
return x >> k & 1;
}
template <typename UINT>
struct all_bit {
struct iter {
UINT s;
iter(UINT s) : s(s) {}
int operator*() const { return lowbit(s); }
iter &operator++() {
s &= s - 1;
return *this;
}
bool operator!=(const iter) const { return s != 0; }
};
UINT s;
all_bit(UINT s) : s(s) {}
iter begin() const { return iter(s); }
iter end() const { return iter(0); }
};
template <typename UINT>
struct all_subset {
static_assert(is_unsigned<UINT>::value);
struct iter {
UINT s, t;
bool ed;
iter(UINT s) : s(s), t(s), ed(0) {}
int operator*() const { return s ^ t; }
iter &operator++() {
(t == 0 ? ed = 1 : t = (t - 1) & s);
return *this;
}
bool operator!=(const iter) const { return !ed; }
};
UINT s;
all_subset(UINT s) : s(s) {}
iter begin() const { return iter(s); }
iter end() const { return iter(0); }
};
template <typename T>
T floor(T a, T b) {
return a / b - (a % b && (a ^ b) < 0);
}
template <typename T>
T ceil(T x, T y) {
return floor(x + y - 1, y);
}
template <typename T>
T bmod(T x, T y) {
return x - y * floor(x, y);
}
template <typename T>
pair<T, T> divmod(T x, T y) {
T q = floor(x, y);
return {q, x - q * y};
}
template <typename T, typename U>
T SUM(const vector<U> &A) {
T sm = 0;
for (auto &&a: A) sm += a;
return sm;
}
#define MIN(v) *min_element(all(v))
#define MAX(v) *max_element(all(v))
#define LB(c, x) distance((c).begin(), lower_bound(all(c), (x)))
#define UB(c, x) distance((c).begin(), upper_bound(all(c), (x)))
#define UNIQUE(x) sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit()
template <typename T>
T POP(deque<T> &que) {
T a = que.front();
que.pop_front();
return a;
}
template <typename T>
T POP(pq<T> &que) {
T a = que.top();
que.pop();
return a;
}
template <typename T>
T POP(pqg<T> &que) {
T a = que.top();
que.pop();
return a;
}
template <typename T>
T POP(vc<T> &que) {
T a = que.back();
que.pop_back();
return a;
}
template <typename F>
ll binary_search(F check, ll ok, ll ng, bool check_ok = true) {
if (check_ok) assert(check(ok));
while (abs(ok - ng) > 1) {
auto x = (ng + ok) / 2;
(check(x) ? ok : ng) = x;
}
return ok;
}
template <typename F>
double binary_search_real(F check, double ok, double ng, int iter = 100) {
FOR(iter) {
double x = (ok + ng) / 2;
(check(x) ? ok : ng) = x;
}
return (ok + ng) / 2;
}
template <class T, class S>
inline bool chmax(T &a, const S &b) {
return (a < b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chmin(T &a, const S &b) {
return (a > b ? a = b, 1 : 0);
}
// ? は -1
vc<int> s_to_vi(const string &S, char first_char) {
vc<int> A(S.size());
FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); }
return A;
}
template <typename T, typename U>
vector<T> cumsum(vector<U> &A, int off = 1) {
int N = A.size();
vector<T> B(N + 1);
FOR(i, N) { B[i + 1] = B[i] + A[i]; }
if (off == 0) B.erase(B.begin());
return B;
}
// stable sort
template <typename T>
vector<int> argsort(const vector<T> &A) {
vector<int> ids(len(A));
iota(all(ids), 0);
sort(all(ids), [&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); });
return ids;
}
// A[I[0]], A[I[1]], ...
template <typename T>
vc<T> rearrange(const vc<T> &A, const vc<int> &I) {
vc<T> B(len(I));
FOR(i, len(I)) B[i] = A[I[i]];
return B;
}
template <typename T, typename... Vectors>
void concat(vc<T> &first, const Vectors &... others) {
vc<T> &res = first;
(res.insert(res.end(), others.begin(), others.end()), ...);
}
#endif
#line 1 "other/io.hpp"
#define FASTIO
#include <unistd.h>
// https://judge.yosupo.jp/submission/21623
namespace fastio {
static constexpr uint32_t SZ = 1 << 17;
char ibuf[SZ];
char obuf[SZ];
char out[100];
// pointer of ibuf, obuf
uint32_t pil = 0, pir = 0, por = 0;
struct Pre {
char num[10000][4];
constexpr Pre() : num() {
for (int i = 0; i < 10000; i++) {
int n = i;
for (int j = 3; j >= 0; j--) {
num[i][j] = n % 10 | '0';
n /= 10;
}
}
}
} constexpr pre;
inline void load() {
memcpy(ibuf, ibuf + pil, pir - pil);
pir = pir - pil + fread(ibuf + pir - pil, 1, SZ - pir + pil, stdin);
pil = 0;
if (pir < SZ) ibuf[pir++] = '\n';
}
inline void flush() {
fwrite(obuf, 1, por, stdout);
por = 0;
}
void rd(char &c) {
do {
if (pil + 1 > pir) load();
c = ibuf[pil++];
} while (isspace(c));
}
void rd(string &x) {
x.clear();
char c;
do {
if (pil + 1 > pir) load();
c = ibuf[pil++];
} while (isspace(c));
do {
x += c;
if (pil == pir) load();
c = ibuf[pil++];
} while (!isspace(c));
}
template <typename T>
void rd_real(T &x) {
string s;
rd(s);
x = stod(s);
}
template <typename T>
void rd_integer(T &x) {
if (pil + 100 > pir) load();
char c;
do
c = ibuf[pil++];
while (c < '-');
bool minus = 0;
if constexpr (is_signed<T>::value || is_same_v<T, i128>) {
if (c == '-') { minus = 1, c = ibuf[pil++]; }
}
x = 0;
while ('0' <= c) { x = x * 10 + (c & 15), c = ibuf[pil++]; }
if constexpr (is_signed<T>::value || is_same_v<T, i128>) {
if (minus) x = -x;
}
}
void rd(int &x) { rd_integer(x); }
void rd(ll &x) { rd_integer(x); }
void rd(i128 &x) { rd_integer(x); }
void rd(u32 &x) { rd_integer(x); }
void rd(u64 &x) { rd_integer(x); }
void rd(u128 &x) { rd_integer(x); }
void rd(double &x) { rd_real(x); }
void rd(long double &x) { rd_real(x); }
void rd(f128 &x) { rd_real(x); }
template <class T, class U>
void rd(pair<T, U> &p) {
return rd(p.first), rd(p.second);
}
template <size_t N = 0, typename T>
void rd_tuple(T &t) {
if constexpr (N < std::tuple_size<T>::value) {
auto &x = std::get<N>(t);
rd(x);
rd_tuple<N + 1>(t);
}
}
template <class... T>
void rd(tuple<T...> &tpl) {
rd_tuple(tpl);
}
template <size_t N = 0, typename T>
void rd(array<T, N> &x) {
for (auto &d: x) rd(d);
}
template <class T>
void rd(vc<T> &x) {
for (auto &d: x) rd(d);
}
void read() {}
template <class H, class... T>
void read(H &h, T &... t) {
rd(h), read(t...);
}
void wt(const char c) {
if (por == SZ) flush();
obuf[por++] = c;
}
void wt(const string s) {
for (char c: s) wt(c);
}
void wt(const char *s) {
size_t len = strlen(s);
for (size_t i = 0; i < len; i++) wt(s[i]);
}
template <typename T>
void wt_integer(T x) {
if (por > SZ - 100) flush();
if (x < 0) { obuf[por++] = '-', x = -x; }
int outi;
for (outi = 96; x >= 10000; outi -= 4) {
memcpy(out + outi, pre.num[x % 10000], 4);
x /= 10000;
}
if (x >= 1000) {
memcpy(obuf + por, pre.num[x], 4);
por += 4;
} else if (x >= 100) {
memcpy(obuf + por, pre.num[x] + 1, 3);
por += 3;
} else if (x >= 10) {
int q = (x * 103) >> 10;
obuf[por] = q | '0';
obuf[por + 1] = (x - q * 10) | '0';
por += 2;
} else
obuf[por++] = x | '0';
memcpy(obuf + por, out + outi + 4, 96 - outi);
por += 96 - outi;
}
template <typename T>
void wt_real(T x) {
ostringstream oss;
oss << fixed << setprecision(15) << double(x);
string s = oss.str();
wt(s);
}
void wt(int x) { wt_integer(x); }
void wt(ll x) { wt_integer(x); }
void wt(i128 x) { wt_integer(x); }
void wt(u32 x) { wt_integer(x); }
void wt(u64 x) { wt_integer(x); }
void wt(u128 x) { wt_integer(x); }
void wt(double x) { wt_real(x); }
void wt(long double x) { wt_real(x); }
void wt(f128 x) { wt_real(x); }
template <class T, class U>
void wt(const pair<T, U> val) {
wt(val.first);
wt(' ');
wt(val.second);
}
template <size_t N = 0, typename T>
void wt_tuple(const T t) {
if constexpr (N < std::tuple_size<T>::value) {
if constexpr (N > 0) { wt(' '); }
const auto x = std::get<N>(t);
wt(x);
wt_tuple<N + 1>(t);
}
}
template <class... T>
void wt(tuple<T...> tpl) {
wt_tuple(tpl);
}
template <class T, size_t S>
void wt(const array<T, S> val) {
auto n = val.size();
for (size_t i = 0; i < n; i++) {
if (i) wt(' ');
wt(val[i]);
}
}
template <class T>
void wt(const vector<T> val) {
auto n = val.size();
for (size_t i = 0; i < n; i++) {
if (i) wt(' ');
wt(val[i]);
}
}
void print() { wt('\n'); }
template <class Head, class... Tail>
void print(Head &&head, Tail &&... tail) {
wt(head);
if (sizeof...(Tail)) wt(' ');
print(forward<Tail>(tail)...);
}
// gcc expansion. called automaticall after main.
void __attribute__((destructor)) _d() { flush(); }
} // namespace fastio
using fastio::read;
using fastio::print;
using fastio::flush;
#if defined(LOCAL)
#define SHOW(...) SHOW_IMPL(__VA_ARGS__, SHOW6, SHOW5, SHOW4, SHOW3, SHOW2, SHOW1)(__VA_ARGS__)
#define SHOW_IMPL(_1, _2, _3, _4, _5, _6, NAME, ...) NAME
#define SHOW1(x) print(#x, "=", (x)), flush()
#define SHOW2(x, y) print(#x, "=", (x), #y, "=", (y)), flush()
#define SHOW3(x, y, z) print(#x, "=", (x), #y, "=", (y), #z, "=", (z)), flush()
#define SHOW4(x, y, z, w) print(#x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w)), flush()
#define SHOW5(x, y, z, w, v) print(#x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w), #v, "=", (v)), flush()
#define SHOW6(x, y, z, w, v, u) print(#x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w), #v, "=", (v), #u, "=", (u)), flush()
#else
#define SHOW(...)
#endif
#define INT(...) \
int __VA_ARGS__; \
read(__VA_ARGS__)
#define LL(...) \
ll __VA_ARGS__; \
read(__VA_ARGS__)
#define U32(...) \
u32 __VA_ARGS__; \
read(__VA_ARGS__)
#define U64(...) \
u64 __VA_ARGS__; \
read(__VA_ARGS__)
#define STR(...) \
string __VA_ARGS__; \
read(__VA_ARGS__)
#define CHAR(...) \
char __VA_ARGS__; \
read(__VA_ARGS__)
#define DBL(...) \
double __VA_ARGS__; \
read(__VA_ARGS__)
#define VEC(type, name, size) \
vector<type> name(size); \
read(name)
#define VV(type, name, h, w) \
vector<vector<type>> name(h, vector<type>(w)); \
read(name)
void YES(bool t = 1) { print(t ? "YES" : "NO"); }
void NO(bool t = 1) { YES(!t); }
void Yes(bool t = 1) { print(t ? "Yes" : "No"); }
void No(bool t = 1) { Yes(!t); }
void yes(bool t = 1) { print(t ? "yes" : "no"); }
void no(bool t = 1) { yes(!t); }
void YA(bool t = 1) { print(t ? "YA" : "TIDAK"); }
void TIDAK(bool t = 1) { YA(!t); }
#line 2 "ds/fastset.hpp"
// 64-ary tree
// space: (N/63) * u64
struct FastSet {
static constexpr u32 B = 64;
int n, log;
vvc<u64> seg;
FastSet() {}
FastSet(int n) { build(n); }
int size() { return n; }
template <typename F>
FastSet(int n, F f) {
build(n, f);
}
void build(int m) {
seg.clear();
n = m;
do {
seg.push_back(vc<u64>((m + B - 1) / B));
m = (m + B - 1) / B;
} while (m > 1);
log = len(seg);
}
template <typename F>
void build(int n, F f) {
build(n);
FOR(i, n) { seg[0][i / B] |= u64(f(i)) << (i % B); }
FOR(h, log - 1) {
FOR(i, len(seg[h])) { seg[h + 1][i / B] |= u64(bool(seg[h][i])) << (i % B); }
}
}
bool operator[](int i) const { return seg[0][i / B] >> (i % B) & 1; }
void insert(int i) {
assert(0 <= i && i < n);
for (int h = 0; h < log; h++) { seg[h][i / B] |= u64(1) << (i % B), i /= B; }
}
void add(int i) { insert(i); }
void erase(int i) {
assert(0 <= i && i < n);
u64 x = 0;
for (int h = 0; h < log; h++) {
seg[h][i / B] &= ~(u64(1) << (i % B));
seg[h][i / B] |= x << (i % B);
x = bool(seg[h][i / B]);
i /= B;
}
}
void remove(int i) { erase(i); }
// min[x,n) or n
int next(int i) {
assert(i <= n);
chmax(i, 0);
for (int h = 0; h < log; h++) {
if (i / B == seg[h].size()) break;
u64 d = seg[h][i / B] >> (i % B);
if (!d) {
i = i / B + 1;
continue;
}
i += lowbit(d);
for (int g = h - 1; g >= 0; g--) {
i *= B;
i += lowbit(seg[g][i / B]);
}
return i;
}
return n;
}
// max [0,x], or -1
int prev(int i) {
assert(i >= -1);
if (i >= n) i = n - 1;
for (int h = 0; h < log; h++) {
if (i == -1) break;
u64 d = seg[h][i / B] << (63 - i % B);
if (!d) {
i = i / B - 1;
continue;
}
i -= __builtin_clzll(d);
for (int g = h - 1; g >= 0; g--) {
i *= B;
i += topbit(seg[g][i / B]);
}
return i;
}
return -1;
}
bool any(int l, int r) { return next(l) < r; }
// [l, r)
template <typename F>
void enumerate(int l, int r, F f) {
for (int x = next(l); x < r; x = next(x + 1)) f(x);
}
string to_string() {
string s(n, '?');
for (int i = 0; i < n; ++i) s[i] = ((*this)[i] ? '1' : '0');
return s;
}
};
#line 2 "ds/segtree/segtree.hpp"
template <class Monoid>
struct SegTree {
using MX = Monoid;
using X = typename MX::value_type;
using value_type = X;
vc<X> dat;
int n, log, size;
SegTree() {}
SegTree(int n) { build(n); }
template <typename F>
SegTree(int n, F f) {
build(n, f);
}
SegTree(const vc<X>& v) { build(v); }
void build(int m) {
build(m, [](int i) -> X { return MX::unit(); });
}
void build(const vc<X>& v) {
build(len(v), [&](int i) -> X { return v[i]; });
}
template <typename F>
void build(int m, F f) {
n = m, log = 1;
while ((1 << log) < n) ++log;
size = 1 << log;
dat.assign(size << 1, MX::unit());
FOR(i, n) dat[size + i] = f(i);
FOR_R(i, 1, size) update(i);
}
X get(int i) { return dat[size + i]; }
vc<X> get_all() { return {dat.begin() + size, dat.begin() + size + n}; }
void update(int i) { dat[i] = Monoid::op(dat[2 * i], dat[2 * i + 1]); }
void set(int i, const X& x) {
assert(i < n);
dat[i += size] = x;
while (i >>= 1) update(i);
}
void multiply(int i, const X& x) {
assert(i < n);
i += size;
dat[i] = Monoid::op(dat[i], x);
while (i >>= 1) update(i);
}
X prod(int L, int R) {
assert(0 <= L && L <= R && R <= n);
X vl = Monoid::unit(), vr = Monoid::unit();
L += size, R += size;
while (L < R) {
if (L & 1) vl = Monoid::op(vl, dat[L++]);
if (R & 1) vr = Monoid::op(dat[--R], vr);
L >>= 1, R >>= 1;
}
return Monoid::op(vl, vr);
}
X prod_all() { return dat[1]; }
template <class F>
int max_right(F check, int L) {
assert(0 <= L && L <= n && check(Monoid::unit()));
if (L == n) return n;
L += size;
X sm = Monoid::unit();
do {
while (L % 2 == 0) L >>= 1;
if (!check(Monoid::op(sm, dat[L]))) {
while (L < size) {
L = 2 * L;
if (check(Monoid::op(sm, dat[L]))) { sm = Monoid::op(sm, dat[L++]); }
}
return L - size;
}
sm = Monoid::op(sm, dat[L++]);
} while ((L & -L) != L);
return n;
}
template <class F>
int min_left(F check, int R) {
assert(0 <= R && R <= n && check(Monoid::unit()));
if (R == 0) return 0;
R += size;
X sm = Monoid::unit();
do {
--R;
while (R > 1 && (R % 2)) R >>= 1;
if (!check(Monoid::op(dat[R], sm))) {
while (R < size) {
R = 2 * R + 1;
if (check(Monoid::op(dat[R], sm))) { sm = Monoid::op(dat[R--], sm); }
}
return R + 1 - size;
}
sm = Monoid::op(dat[R], sm);
} while ((R & -R) != R);
return 0;
}
// prod_{l<=i<r} A[i xor x]
X xor_prod(int l, int r, int xor_val) {
static_assert(Monoid::commute);
X x = Monoid::unit();
for (int k = 0; k < log + 1; ++k) {
if (l >= r) break;
if (l & 1) { x = Monoid::op(x, dat[(size >> k) + ((l++) ^ xor_val)]); }
if (r & 1) { x = Monoid::op(x, dat[(size >> k) + ((--r) ^ xor_val)]); }
l /= 2, r /= 2, xor_val /= 2;
}
return x;
}
};
#line 3 "ds/segtree/sortable_segtree.hpp"
template <typename Monoid>
struct Sortable_SegTree {
using MX = Monoid;
using X = typename MX::value_type;
const int N, KEY_MAX;
struct Node {
X x, rev_x;
int size;
Node *l, *r;
};
Node* pool;
const int NODES;
int pid;
using np = Node*;
FastSet ss; // 区間の左端全体を表す fastset
SegTree<MX> seg; // 区間を集約した値を区間の左端にのせた segtree
vector<np> root; // 区間の左端に、dynamic segtree の node を乗せる
vector<bool> rev;
Sortable_SegTree(int NODES, int KEY_MAX, vector<int> key, vector<X> dat) : N(key.size()), KEY_MAX(KEY_MAX), NODES(NODES), pid(0), ss(key.size()), seg(dat) {
pool = new Node[NODES];
init(key, dat);
}
~Sortable_SegTree() { delete[] pool; }
void set(int i, int key, const X& x) {
assert(key < KEY_MAX);
split_at(i), split_at(i + 1);
rev[i] = 0, root[i] = new_node();
set_rec(root[i], 0, KEY_MAX, key, x);
seg.set(i, x);
}
X prod_all() { return seg.prod_all(); }
X prod(int l, int r) {
if (pid > NODES * 0.9) rebuild();
split_at(l), split_at(r);
return seg.prod(l, r);
}
void sort_inc(int l, int r) {
split_at(l), split_at(r);
while (1) {
if (pid > NODES * 0.9) rebuild();
np c = root[l];
int i = ss.next(l + 1);
if (i == r) break;
root[l] = merge(c, root[i]);
ss.erase(i), seg.set(i, MX::unit());
}
rev[l] = 0, seg.set(l, root[l]->x);
};
void sort_dec(int l, int r) {
if (pid > NODES * 0.9) rebuild();
sort_inc(l, r), rev[l] = 1;
seg.set(l, root[l]->rev_x);
};
pair<vc<int>, vc<X>> get_all() {
vector<int> key;
vector<X> dat;
key.reserve(N);
dat.reserve(N);
auto dfs = [&](auto& dfs, np n, int l, int r, bool rev) -> void {
if (!n) return;
if (r == l + 1) {
key.eb(l), dat.eb(n->x);
return;
}
int m = (l + r) / 2;
if (!rev) { dfs(dfs, n->l, l, m, rev), dfs(dfs, n->r, m, r, rev); }
if (rev) { dfs(dfs, n->r, m, r, rev), dfs(dfs, n->l, l, m, rev); }
};
for (int i = 0; i < N; ++i) {
if (ss[i]) dfs(dfs, root[i], 0, KEY_MAX, rev[i]);
}
return {key, dat};
}
private:
void init(vector<int>& key, vector<X>& dat) {
rev.assign(N, 0), root.clear(), root.reserve(N);
seg.build(N, [&](int i) -> X { return dat[i]; });
for (int i = 0; i < N; ++i) {
ss.insert(i);
root.eb(new_node(MX::unit()));
assert(key[i] < KEY_MAX);
set_rec(root[i], 0, KEY_MAX, key[i], dat[i]);
}
}
// x が左端になるようにする
void split_at(int x) {
if (x == N || ss[x]) return;
int a = ss.prev(x), b = ss.next(a + 1);
ss.insert(x);
if (!rev[a]) {
auto [nl, nr] = split(root[a], x - a);
root[a] = nl, root[x] = nr;
rev[a] = rev[x] = 0;
seg.set(a, root[a]->x), seg.set(x, root[x]->x);
} else {
auto [nl, nr] = split(root[a], b - x);
root[a] = nr, root[x] = nl;
rev[a] = rev[x] = 1;
seg.set(a, root[a]->rev_x), seg.set(x, root[x]->rev_x);
}
}
void rebuild() {
auto [key, dat] = get_all();
pid = 0;
init(key, dat);
}
np new_node(X x = MX::unit()) {
assert(pid < NODES);
pool[pid].x = pool[pid].rev_x = x;
pool[pid].l = pool[pid].r = nullptr;
pool[pid].size = 1;
return &(pool[pid++]);
}
pair<np, np> split(np n, int k) {
if (k == 0) { return {nullptr, n}; }
if (k == n->size) { return {n, nullptr}; }
int s = (n->l ? n->l->size : 0);
Node* b = new_node();
if (k <= s) {
auto [nl, nr] = split(n->l, k);
b->l = nr, b->r = n->r, n->l = nl, n->r = nullptr;
}
if (k > s) {
auto [nl, nr] = split(n->r, k - s);
n->l = n->l, n->r = nl, b->l = nullptr, b->r = nr;
}
update(n), update(b);
return {n, b};
}
np merge(np a, np b) {
if (!a) return b;
if (!b) return a;
a->l = merge(a->l, b->l), a->r = merge(a->r, b->r);
update(a);
return a;
}
void update(np n) {
if (!(n->l) && !(n->r)) { return; }
if (!(n->l)) {
n->x = n->r->x, n->rev_x = n->r->rev_x, n->size = n->r->size;
return;
}
if (!(n->r)) {
n->x = n->l->x, n->rev_x = n->l->rev_x, n->size = n->l->size;
return;
}
n->x = MX::op(n->l->x, n->r->x);
n->rev_x = MX::op(n->r->rev_x, n->l->rev_x);
n->size = n->l->size + n->r->size;
}
void set_rec(np n, int l, int r, int k, const X& x) {
if (r == l + 1) {
n->x = n->rev_x = x;
return;
}
int m = (l + r) / 2;
if (k < m) {
if (!(n->l)) n->l = new_node();
set_rec(n->l, l, m, k, x);
}
if (m <= k) {
if (!(n->r)) n->r = new_node();
set_rec(n->r, m, r, k, x);
}
update(n);
}
};
#line 2 "alg/monoid/affine.hpp"
// op(F, G) = comp(G,F), F のあとで G
template <typename K>
struct Monoid_Affine {
using F = pair<K, K>;
using value_type = F;
using X = value_type;
static constexpr F op(const F &x, const F &y) noexcept {
return F({x.first * y.first, x.second * y.first + y.second});
}
static constexpr F inverse(const F &x) {
auto [a, b] = x;
a = K(1) / a;
return {a, a * (-b)};
}
static constexpr K eval(const F &f, K x) noexcept {
return f.first * x + f.second;
}
static constexpr F unit() { return {K(1), K(0)}; }
static constexpr bool commute = false;
};
#line 2 "mod/modint_common.hpp"
struct has_mod_impl {
template <class T>
static auto check(T &&x) -> decltype(x.get_mod(), std::true_type{});
template <class T>
static auto check(...) -> std::false_type;
};
template <class T>
class has_mod : public decltype(has_mod_impl::check<T>(std::declval<T>())) {};
template <typename mint>
mint inv(int n) {
static const int mod = mint::get_mod();
static vector<mint> dat = {0, 1};
assert(0 <= n);
if (n >= mod) n %= mod;
while (len(dat) <= n) {
int k = len(dat);
int q = (mod + k - 1) / k;
dat.eb(dat[k * q - mod] * mint::raw(q));
}
return dat[n];
}
template <typename mint>
mint fact(int n) {
static const int mod = mint::get_mod();
assert(0 <= n && n < mod);
static vector<mint> dat = {1, 1};
while (len(dat) <= n) dat.eb(dat[len(dat) - 1] * mint::raw(len(dat)));
return dat[n];
}
template <typename mint>
mint fact_inv(int n) {
static vector<mint> dat = {1, 1};
if (n < 0) return mint(0);
while (len(dat) <= n) dat.eb(dat[len(dat) - 1] * inv<mint>(len(dat)));
return dat[n];
}
template <class mint, class... Ts>
mint fact_invs(Ts... xs) {
return (mint(1) * ... * fact_inv<mint>(xs));
}
template <typename mint, class Head, class... Tail>
mint multinomial(Head &&head, Tail &&... tail) {
return fact<mint>(head) * fact_invs<mint>(std::forward<Tail>(tail)...);
}
template <typename mint>
mint C_dense(int n, int k) {
assert(n >= 0);
if (k < 0 || n < k) return 0;
static vvc<mint> C;
static int H = 0, W = 0;
auto calc = [&](int i, int j) -> mint {
if (i == 0) return (j == 0 ? mint(1) : mint(0));
return C[i - 1][j] + (j ? C[i - 1][j - 1] : 0);
};
if (W <= k) {
FOR(i, H) {
C[i].resize(k + 1);
FOR(j, W, k + 1) { C[i][j] = calc(i, j); }
}
W = k + 1;
}
if (H <= n) {
C.resize(n + 1);
FOR(i, H, n + 1) {
C[i].resize(W);
FOR(j, W) { C[i][j] = calc(i, j); }
}
H = n + 1;
}
return C[n][k];
}
template <typename mint, bool large = false, bool dense = false>
mint C(ll n, ll k) {
assert(n >= 0);
if (k < 0 || n < k) return 0;
if constexpr (dense) return C_dense<mint>(n, k);
if constexpr (!large) return multinomial<mint>(n, k, n - k);
k = min(k, n - k);
mint x(1);
FOR(i, k) x *= mint(n - i);
return x * fact_inv<mint>(k);
}
template <typename mint, bool large = false>
mint C_inv(ll n, ll k) {
assert(n >= 0);
assert(0 <= k && k <= n);
if (!large) return fact_inv<mint>(n) * fact<mint>(k) * fact<mint>(n - k);
return mint(1) / C<mint, 1>(n, k);
}
// [x^d](1-x)^{-n}
template <typename mint, bool large = false, bool dense = false>
mint C_negative(ll n, ll d) {
assert(n >= 0);
if (d < 0) return mint(0);
if (n == 0) { return (d == 0 ? mint(1) : mint(0)); }
return C<mint, large, dense>(n + d - 1, d);
}
#line 3 "mod/modint.hpp"
template <int mod>
struct modint {
static constexpr u32 umod = u32(mod);
static_assert(umod < u32(1) << 31);
u32 val;
static modint raw(u32 v) {
modint x;
x.val = v;
return x;
}
constexpr modint() : val(0) {}
constexpr modint(u32 x) : val(x % umod) {}
constexpr modint(u64 x) : val(x % umod) {}
constexpr modint(u128 x) : val(x % umod) {}
constexpr modint(int x) : val((x %= mod) < 0 ? x + mod : x){};
constexpr modint(ll x) : val((x %= mod) < 0 ? x + mod : x){};
constexpr modint(i128 x) : val((x %= mod) < 0 ? x + mod : x){};
bool operator<(const modint &other) const { return val < other.val; }
modint &operator+=(const modint &p) {
if ((val += p.val) >= umod) val -= umod;
return *this;
}
modint &operator-=(const modint &p) {
if ((val += umod - p.val) >= umod) val -= umod;
return *this;
}
modint &operator*=(const modint &p) {
val = u64(val) * p.val % umod;
return *this;
}
modint &operator/=(const modint &p) {
*this *= p.inverse();
return *this;
}
modint operator-() const { return modint::raw(val ? mod - val : u32(0)); }
modint operator+(const modint &p) const { return modint(*this) += p; }
modint operator-(const modint &p) const { return modint(*this) -= p; }
modint operator*(const modint &p) const { return modint(*this) *= p; }
modint operator/(const modint &p) const { return modint(*this) /= p; }
bool operator==(const modint &p) const { return val == p.val; }
bool operator!=(const modint &p) const { return val != p.val; }
modint inverse() const {
int a = val, b = mod, u = 1, v = 0, t;
while (b > 0) {
t = a / b;
swap(a -= t * b, b), swap(u -= t * v, v);
}
return modint(u);
}
modint pow(ll n) const {
if (n < 0) return inverse().pow(-n);
assert(n >= 0);
modint ret(1), mul(val);
while (n > 0) {
if (n & 1) ret *= mul;
mul *= mul;
n >>= 1;
}
return ret;
}
static constexpr int get_mod() { return mod; }
// (n, r), r は 1 の 2^n 乗根
static constexpr pair<int, int> ntt_info() {
if (mod == 120586241) return {20, 74066978};
if (mod == 167772161) return {25, 17};
if (mod == 469762049) return {26, 30};
if (mod == 754974721) return {24, 362};
if (mod == 880803841) return {23, 211};
if (mod == 943718401) return {22, 663003469};
if (mod == 998244353) return {23, 31};
if (mod == 1004535809) return {21, 582313106};
if (mod == 1012924417) return {21, 368093570};
return {-1, -1};
}
static constexpr bool can_ntt() { return ntt_info().fi != -1; }
};
#ifdef FASTIO
template <int mod>
void rd(modint<mod> &x) {
fastio::rd(x.val);
x.val %= mod;
// assert(0 <= x.val && x.val < mod);
}
template <int mod>
void wt(modint<mod> x) {
fastio::wt(x.val);
}
#endif
using modint107 = modint<1000000007>;
using modint998 = modint<998244353>;
#line 7 "test/2_library_checker/data_structure/sort_segtree_1.test.cpp"
using mint = modint998;
void solve() {
// クエリ先読みする方
using AFF = Monoid_Affine<mint>;
LL(N, Q);
vc<int> key(N);
vc<pair<mint, mint>> seg_raw(N);
FOR(i, N) { read(key[i]), read(seg_raw[i]); }
vc<int> all_key = key;
using QT = tuple<int, int, int, int, int>;
vc<QT> query(Q);
FOR(q, Q) {
LL(t);
if (t == 0) {
LL(i, p, a, b);
query[q] = {t, i, p, a, b};
all_key.eb(p);
}
if (t == 1) {
LL(l, r, x);
query[q] = {t, l, r, x, 0};
}
if (t == 2 || t == 3) {
LL(l, r);
query[q] = {t, l, r, 0, 0};
}
}
UNIQUE(all_key);
for (auto&& k: key) k = LB(all_key, k);
Sortable_SegTree<AFF> seg(4000000, len(all_key), key, seg_raw);
for (auto&& [t, a, b, c, d]: query) {
if (t == 0) {
b = LB(all_key, b);
seg.set(a, b, {mint(c), mint(d)});
}
if (t == 1) {
auto f = seg.prod(a, b);
print(AFF::eval(f, c));
}
if (t == 2) { seg.sort_inc(a, b); }
if (t == 3) { seg.sort_dec(a, b); }
}
}
signed main() {
cin.tie(nullptr);
ios::sync_with_stdio(false);
cout << setprecision(15);
ll T = 1;
FOR(T) solve();
return 0;
}