This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub maspypy/library
#define PROBLEM "https://judge.yosupo.jp/problem/point_set_range_sort_range_composite" #include "my_template.hpp" #include "other/io.hpp" #include "ds/segtree/sortable_segtree.hpp" #include "alg/monoid/affine.hpp" #include "mod/modint.hpp" using mint = modint998; void solve() { // クエリ先読みする方 using AFF = Monoid_Affine<mint>; LL(N, Q); vc<int> key(N); vc<pair<mint, mint>> seg_raw(N); FOR(i, N) { read(key[i]), read(seg_raw[i]); } vc<int> all_key = key; using QT = tuple<int, int, int, int, int>; vc<QT> query(Q); FOR(q, Q) { LL(t); if (t == 0) { LL(i, p, a, b); query[q] = {t, i, p, a, b}; all_key.eb(p); } if (t == 1) { LL(l, r, x); query[q] = {t, l, r, x, 0}; } if (t == 2 || t == 3) { LL(l, r); query[q] = {t, l, r, 0, 0}; } } UNIQUE(all_key); for (auto&& k: key) k = LB(all_key, k); Sortable_SegTree<AFF> seg(4000000, len(all_key), key, seg_raw); for (auto&& [t, a, b, c, d]: query) { if (t == 0) { b = LB(all_key, b); seg.set(a, b, {mint(c), mint(d)}); } if (t == 1) { auto f = seg.prod(a, b); print(AFF::eval(f, c)); } if (t == 2) { seg.sort_inc(a, b); } if (t == 3) { seg.sort_dec(a, b); } } } signed main() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << setprecision(15); ll T = 1; FOR(T) solve(); return 0; }
#line 1 "test/2_library_checker/data_structure/sort_segtree.test.cpp" #define PROBLEM "https://judge.yosupo.jp/problem/point_set_range_sort_range_composite" #line 1 "my_template.hpp" #if defined(LOCAL) #include <my_template_compiled.hpp> #else // https://codeforces.com/blog/entry/96344 #pragma GCC optimize("Ofast,unroll-loops") // いまの CF だとこれ入れると動かない? // #pragma GCC target("avx2,popcnt") #include <bits/stdc++.h> using namespace std; using ll = long long; using u8 = uint8_t; using u16 = uint16_t; using u32 = uint32_t; using u64 = uint64_t; using i128 = __int128; using u128 = unsigned __int128; using f128 = __float128; template <class T> constexpr T infty = 0; template <> constexpr int infty<int> = 1'010'000'000; template <> constexpr ll infty<ll> = 2'020'000'000'000'000'000; template <> constexpr u32 infty<u32> = infty<int>; template <> constexpr u64 infty<u64> = infty<ll>; template <> constexpr i128 infty<i128> = i128(infty<ll>) * 2'000'000'000'000'000'000; template <> constexpr double infty<double> = infty<ll>; template <> constexpr long double infty<long double> = infty<ll>; using pi = pair<ll, ll>; using vi = vector<ll>; template <class T> using vc = vector<T>; template <class T> using vvc = vector<vc<T>>; template <class T> using vvvc = vector<vvc<T>>; template <class T> using vvvvc = vector<vvvc<T>>; template <class T> using vvvvvc = vector<vvvvc<T>>; template <class T> using pq = priority_queue<T>; template <class T> using pqg = priority_queue<T, vector<T>, greater<T>>; #define vv(type, name, h, ...) vector<vector<type>> name(h, vector<type>(__VA_ARGS__)) #define vvv(type, name, h, w, ...) vector<vector<vector<type>>> name(h, vector<vector<type>>(w, vector<type>(__VA_ARGS__))) #define vvvv(type, name, a, b, c, ...) \ vector<vector<vector<vector<type>>>> name(a, vector<vector<vector<type>>>(b, vector<vector<type>>(c, vector<type>(__VA_ARGS__)))) // https://trap.jp/post/1224/ #define FOR1(a) for (ll _ = 0; _ < ll(a); ++_) #define FOR2(i, a) for (ll i = 0; i < ll(a); ++i) #define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i) #define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c)) #define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i) #define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i) #define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i) #define overload4(a, b, c, d, e, ...) e #define overload3(a, b, c, d, ...) d #define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__) #define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__) #define FOR_subset(t, s) for (ll t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s))) #define all(x) x.begin(), x.end() #define len(x) ll(x.size()) #define elif else if #define eb emplace_back #define mp make_pair #define mt make_tuple #define fi first #define se second #define stoi stoll int popcnt(int x) { return __builtin_popcount(x); } int popcnt(u32 x) { return __builtin_popcount(x); } int popcnt(ll x) { return __builtin_popcountll(x); } int popcnt(u64 x) { return __builtin_popcountll(x); } int popcnt_mod_2(int x) { return __builtin_parity(x); } int popcnt_mod_2(u32 x) { return __builtin_parity(x); } int popcnt_mod_2(ll x) { return __builtin_parityll(x); } int popcnt_mod_2(u64 x) { return __builtin_parityll(x); } // (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2) int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); } int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); } int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); } int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); } // (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2) int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); } int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); } int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); } int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); } template <typename T> T floor(T a, T b) { return a / b - (a % b && (a ^ b) < 0); } template <typename T> T ceil(T x, T y) { return floor(x + y - 1, y); } template <typename T> T bmod(T x, T y) { return x - y * floor(x, y); } template <typename T> pair<T, T> divmod(T x, T y) { T q = floor(x, y); return {q, x - q * y}; } template <typename T, typename U> T SUM(const vector<U> &A) { T sm = 0; for (auto &&a: A) sm += a; return sm; } #define MIN(v) *min_element(all(v)) #define MAX(v) *max_element(all(v)) #define LB(c, x) distance((c).begin(), lower_bound(all(c), (x))) #define UB(c, x) distance((c).begin(), upper_bound(all(c), (x))) #define UNIQUE(x) sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit() template <typename T> T POP(deque<T> &que) { T a = que.front(); que.pop_front(); return a; } template <typename T> T POP(pq<T> &que) { T a = que.top(); que.pop(); return a; } template <typename T> T POP(pqg<T> &que) { T a = que.top(); que.pop(); return a; } template <typename T> T POP(vc<T> &que) { T a = que.back(); que.pop_back(); return a; } template <typename F> ll binary_search(F check, ll ok, ll ng, bool check_ok = true) { if (check_ok) assert(check(ok)); while (abs(ok - ng) > 1) { auto x = (ng + ok) / 2; (check(x) ? ok : ng) = x; } return ok; } template <typename F> double binary_search_real(F check, double ok, double ng, int iter = 100) { FOR(iter) { double x = (ok + ng) / 2; (check(x) ? ok : ng) = x; } return (ok + ng) / 2; } template <class T, class S> inline bool chmax(T &a, const S &b) { return (a < b ? a = b, 1 : 0); } template <class T, class S> inline bool chmin(T &a, const S &b) { return (a > b ? a = b, 1 : 0); } // ? は -1 vc<int> s_to_vi(const string &S, char first_char) { vc<int> A(S.size()); FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); } return A; } template <typename T, typename U> vector<T> cumsum(vector<U> &A, int off = 1) { int N = A.size(); vector<T> B(N + 1); FOR(i, N) { B[i + 1] = B[i] + A[i]; } if (off == 0) B.erase(B.begin()); return B; } // stable sort template <typename T> vector<int> argsort(const vector<T> &A) { vector<int> ids(len(A)); iota(all(ids), 0); sort(all(ids), [&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); }); return ids; } // A[I[0]], A[I[1]], ... template <typename T> vc<T> rearrange(const vc<T> &A, const vc<int> &I) { vc<T> B(len(I)); FOR(i, len(I)) B[i] = A[I[i]]; return B; } template <typename T, typename... Vectors> void concat(vc<T> &first, const Vectors &... others) { vc<T> &res = first; (res.insert(res.end(), others.begin(), others.end()), ...); } #endif #line 1 "other/io.hpp" #define FASTIO #include <unistd.h> // https://judge.yosupo.jp/submission/21623 namespace fastio { static constexpr uint32_t SZ = 1 << 17; char ibuf[SZ]; char obuf[SZ]; char out[100]; // pointer of ibuf, obuf uint32_t pil = 0, pir = 0, por = 0; struct Pre { char num[10000][4]; constexpr Pre() : num() { for (int i = 0; i < 10000; i++) { int n = i; for (int j = 3; j >= 0; j--) { num[i][j] = n % 10 | '0'; n /= 10; } } } } constexpr pre; inline void load() { memcpy(ibuf, ibuf + pil, pir - pil); pir = pir - pil + fread(ibuf + pir - pil, 1, SZ - pir + pil, stdin); pil = 0; if (pir < SZ) ibuf[pir++] = '\n'; } inline void flush() { fwrite(obuf, 1, por, stdout); por = 0; } void rd(char &c) { do { if (pil + 1 > pir) load(); c = ibuf[pil++]; } while (isspace(c)); } void rd(string &x) { x.clear(); char c; do { if (pil + 1 > pir) load(); c = ibuf[pil++]; } while (isspace(c)); do { x += c; if (pil == pir) load(); c = ibuf[pil++]; } while (!isspace(c)); } template <typename T> void rd_real(T &x) { string s; rd(s); x = stod(s); } template <typename T> void rd_integer(T &x) { if (pil + 100 > pir) load(); char c; do c = ibuf[pil++]; while (c < '-'); bool minus = 0; if constexpr (is_signed<T>::value || is_same_v<T, i128>) { if (c == '-') { minus = 1, c = ibuf[pil++]; } } x = 0; while ('0' <= c) { x = x * 10 + (c & 15), c = ibuf[pil++]; } if constexpr (is_signed<T>::value || is_same_v<T, i128>) { if (minus) x = -x; } } void rd(int &x) { rd_integer(x); } void rd(ll &x) { rd_integer(x); } void rd(i128 &x) { rd_integer(x); } void rd(u32 &x) { rd_integer(x); } void rd(u64 &x) { rd_integer(x); } void rd(u128 &x) { rd_integer(x); } void rd(double &x) { rd_real(x); } void rd(long double &x) { rd_real(x); } void rd(f128 &x) { rd_real(x); } template <class T, class U> void rd(pair<T, U> &p) { return rd(p.first), rd(p.second); } template <size_t N = 0, typename T> void rd_tuple(T &t) { if constexpr (N < std::tuple_size<T>::value) { auto &x = std::get<N>(t); rd(x); rd_tuple<N + 1>(t); } } template <class... T> void rd(tuple<T...> &tpl) { rd_tuple(tpl); } template <size_t N = 0, typename T> void rd(array<T, N> &x) { for (auto &d: x) rd(d); } template <class T> void rd(vc<T> &x) { for (auto &d: x) rd(d); } void read() {} template <class H, class... T> void read(H &h, T &... t) { rd(h), read(t...); } void wt(const char c) { if (por == SZ) flush(); obuf[por++] = c; } void wt(const string s) { for (char c: s) wt(c); } void wt(const char *s) { size_t len = strlen(s); for (size_t i = 0; i < len; i++) wt(s[i]); } template <typename T> void wt_integer(T x) { if (por > SZ - 100) flush(); if (x < 0) { obuf[por++] = '-', x = -x; } int outi; for (outi = 96; x >= 10000; outi -= 4) { memcpy(out + outi, pre.num[x % 10000], 4); x /= 10000; } if (x >= 1000) { memcpy(obuf + por, pre.num[x], 4); por += 4; } else if (x >= 100) { memcpy(obuf + por, pre.num[x] + 1, 3); por += 3; } else if (x >= 10) { int q = (x * 103) >> 10; obuf[por] = q | '0'; obuf[por + 1] = (x - q * 10) | '0'; por += 2; } else obuf[por++] = x | '0'; memcpy(obuf + por, out + outi + 4, 96 - outi); por += 96 - outi; } template <typename T> void wt_real(T x) { ostringstream oss; oss << fixed << setprecision(15) << double(x); string s = oss.str(); wt(s); } void wt(int x) { wt_integer(x); } void wt(ll x) { wt_integer(x); } void wt(i128 x) { wt_integer(x); } void wt(u32 x) { wt_integer(x); } void wt(u64 x) { wt_integer(x); } void wt(u128 x) { wt_integer(x); } void wt(double x) { wt_real(x); } void wt(long double x) { wt_real(x); } void wt(f128 x) { wt_real(x); } template <class T, class U> void wt(const pair<T, U> val) { wt(val.first); wt(' '); wt(val.second); } template <size_t N = 0, typename T> void wt_tuple(const T t) { if constexpr (N < std::tuple_size<T>::value) { if constexpr (N > 0) { wt(' '); } const auto x = std::get<N>(t); wt(x); wt_tuple<N + 1>(t); } } template <class... T> void wt(tuple<T...> tpl) { wt_tuple(tpl); } template <class T, size_t S> void wt(const array<T, S> val) { auto n = val.size(); for (size_t i = 0; i < n; i++) { if (i) wt(' '); wt(val[i]); } } template <class T> void wt(const vector<T> val) { auto n = val.size(); for (size_t i = 0; i < n; i++) { if (i) wt(' '); wt(val[i]); } } void print() { wt('\n'); } template <class Head, class... Tail> void print(Head &&head, Tail &&... tail) { wt(head); if (sizeof...(Tail)) wt(' '); print(forward<Tail>(tail)...); } // gcc expansion. called automaticall after main. void __attribute__((destructor)) _d() { flush(); } } // namespace fastio using fastio::read; using fastio::print; using fastio::flush; #if defined(LOCAL) #define SHOW(...) SHOW_IMPL(__VA_ARGS__, SHOW6, SHOW5, SHOW4, SHOW3, SHOW2, SHOW1)(__VA_ARGS__) #define SHOW_IMPL(_1, _2, _3, _4, _5, _6, NAME, ...) NAME #define SHOW1(x) print(#x, "=", (x)), flush() #define SHOW2(x, y) print(#x, "=", (x), #y, "=", (y)), flush() #define SHOW3(x, y, z) print(#x, "=", (x), #y, "=", (y), #z, "=", (z)), flush() #define SHOW4(x, y, z, w) print(#x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w)), flush() #define SHOW5(x, y, z, w, v) print(#x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w), #v, "=", (v)), flush() #define SHOW6(x, y, z, w, v, u) print(#x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w), #v, "=", (v), #u, "=", (u)), flush() #else #define SHOW(...) #endif #define INT(...) \ int __VA_ARGS__; \ read(__VA_ARGS__) #define LL(...) \ ll __VA_ARGS__; \ read(__VA_ARGS__) #define U32(...) \ u32 __VA_ARGS__; \ read(__VA_ARGS__) #define U64(...) \ u64 __VA_ARGS__; \ read(__VA_ARGS__) #define STR(...) \ string __VA_ARGS__; \ read(__VA_ARGS__) #define CHAR(...) \ char __VA_ARGS__; \ read(__VA_ARGS__) #define DBL(...) \ double __VA_ARGS__; \ read(__VA_ARGS__) #define VEC(type, name, size) \ vector<type> name(size); \ read(name) #define VV(type, name, h, w) \ vector<vector<type>> name(h, vector<type>(w)); \ read(name) void YES(bool t = 1) { print(t ? "YES" : "NO"); } void NO(bool t = 1) { YES(!t); } void Yes(bool t = 1) { print(t ? "Yes" : "No"); } void No(bool t = 1) { Yes(!t); } void yes(bool t = 1) { print(t ? "yes" : "no"); } void no(bool t = 1) { yes(!t); } #line 2 "ds/fastset.hpp" // 64-ary tree // space: (N/63) * u64 struct FastSet { static constexpr u32 B = 64; int n, log; vvc<u64> seg; FastSet() {} FastSet(int n) { build(n); } int size() { return n; } template <typename F> FastSet(int n, F f) { build(n, f); } void build(int m) { seg.clear(); n = m; do { seg.push_back(vc<u64>((m + B - 1) / B)); m = (m + B - 1) / B; } while (m > 1); log = len(seg); } template <typename F> void build(int n, F f) { build(n); FOR(i, n) { seg[0][i / B] |= u64(f(i)) << (i % B); } FOR(h, log - 1) { FOR(i, len(seg[h])) { seg[h + 1][i / B] |= u64(bool(seg[h][i])) << (i % B); } } } bool operator[](int i) const { return seg[0][i / B] >> (i % B) & 1; } void insert(int i) { for (int h = 0; h < log; h++) { seg[h][i / B] |= u64(1) << (i % B), i /= B; } } void add(int i) { insert(i); } void erase(int i) { u64 x = 0; for (int h = 0; h < log; h++) { seg[h][i / B] &= ~(u64(1) << (i % B)); seg[h][i / B] |= x << (i % B); x = bool(seg[h][i / B]); i /= B; } } void remove(int i) { erase(i); } // min[x,n) or n int next(int i) { assert(i <= n); chmax(i, 0); for (int h = 0; h < log; h++) { if (i / B == seg[h].size()) break; u64 d = seg[h][i / B] >> (i % B); if (!d) { i = i / B + 1; continue; } i += lowbit(d); for (int g = h - 1; g >= 0; g--) { i *= B; i += lowbit(seg[g][i / B]); } return i; } return n; } // max [0,x], or -1 int prev(int i) { assert(i >= -1); if (i >= n) i = n - 1; for (int h = 0; h < log; h++) { if (i == -1) break; u64 d = seg[h][i / B] << (63 - i % B); if (!d) { i = i / B - 1; continue; } i -= __builtin_clzll(d); for (int g = h - 1; g >= 0; g--) { i *= B; i += topbit(seg[g][i / B]); } return i; } return -1; } bool any(int l, int r) { return next(l) < r; } // [l, r) template <typename F> void enumerate(int l, int r, F f) { for (int x = next(l); x < r; x = next(x + 1)) f(x); } string to_string() { string s(n, '?'); for (int i = 0; i < n; ++i) s[i] = ((*this)[i] ? '1' : '0'); return s; } }; #line 2 "ds/segtree/segtree.hpp" template <class Monoid> struct SegTree { using MX = Monoid; using X = typename MX::value_type; using value_type = X; vc<X> dat; int n, log, size; SegTree() {} SegTree(int n) { build(n); } template <typename F> SegTree(int n, F f) { build(n, f); } SegTree(const vc<X>& v) { build(v); } void build(int m) { build(m, [](int i) -> X { return MX::unit(); }); } void build(const vc<X>& v) { build(len(v), [&](int i) -> X { return v[i]; }); } template <typename F> void build(int m, F f) { n = m, log = 1; while ((1 << log) < n) ++log; size = 1 << log; dat.assign(size << 1, MX::unit()); FOR(i, n) dat[size + i] = f(i); FOR_R(i, 1, size) update(i); } X get(int i) { return dat[size + i]; } vc<X> get_all() { return {dat.begin() + size, dat.begin() + size + n}; } void update(int i) { dat[i] = Monoid::op(dat[2 * i], dat[2 * i + 1]); } void set(int i, const X& x) { assert(i < n); dat[i += size] = x; while (i >>= 1) update(i); } void multiply(int i, const X& x) { assert(i < n); i += size; dat[i] = Monoid::op(dat[i], x); while (i >>= 1) update(i); } X prod(int L, int R) { assert(0 <= L && L <= R && R <= n); X vl = Monoid::unit(), vr = Monoid::unit(); L += size, R += size; while (L < R) { if (L & 1) vl = Monoid::op(vl, dat[L++]); if (R & 1) vr = Monoid::op(dat[--R], vr); L >>= 1, R >>= 1; } return Monoid::op(vl, vr); } X prod_all() { return dat[1]; } template <class F> int max_right(F check, int L) { assert(0 <= L && L <= n && check(Monoid::unit())); if (L == n) return n; L += size; X sm = Monoid::unit(); do { while (L % 2 == 0) L >>= 1; if (!check(Monoid::op(sm, dat[L]))) { while (L < size) { L = 2 * L; if (check(Monoid::op(sm, dat[L]))) { sm = Monoid::op(sm, dat[L++]); } } return L - size; } sm = Monoid::op(sm, dat[L++]); } while ((L & -L) != L); return n; } template <class F> int min_left(F check, int R) { assert(0 <= R && R <= n && check(Monoid::unit())); if (R == 0) return 0; R += size; X sm = Monoid::unit(); do { --R; while (R > 1 && (R % 2)) R >>= 1; if (!check(Monoid::op(dat[R], sm))) { while (R < size) { R = 2 * R + 1; if (check(Monoid::op(dat[R], sm))) { sm = Monoid::op(dat[R--], sm); } } return R + 1 - size; } sm = Monoid::op(dat[R], sm); } while ((R & -R) != R); return 0; } // prod_{l<=i<r} A[i xor x] X xor_prod(int l, int r, int xor_val) { static_assert(Monoid::commute); X x = Monoid::unit(); for (int k = 0; k < log + 1; ++k) { if (l >= r) break; if (l & 1) { x = Monoid::op(x, dat[(size >> k) + ((l++) ^ xor_val)]); } if (r & 1) { x = Monoid::op(x, dat[(size >> k) + ((--r) ^ xor_val)]); } l /= 2, r /= 2, xor_val /= 2; } return x; } }; #line 3 "ds/segtree/sortable_segtree.hpp" template <typename Monoid> struct Sortable_SegTree { using MX = Monoid; using X = typename MX::value_type; const int N, KEY_MAX; struct Node { X x, rev_x; int size; Node *l, *r; }; Node* pool; const int NODES; int pid; using np = Node*; FastSet ss; // 区間の左端全体を表す fastset SegTree<MX> seg; // 区間を集約した値を区間の左端にのせた segtree vector<np> root; // 区間の左端に、dynamic segtree の node を乗せる vector<bool> rev; Sortable_SegTree(int NODES, int KEY_MAX, vector<int> key, vector<X> dat) : N(key.size()), KEY_MAX(KEY_MAX), NODES(NODES), pid(0), ss(key.size()), seg(dat) { pool = new Node[NODES]; init(key, dat); } ~Sortable_SegTree() { delete[] pool; } void set(int i, int key, const X& x) { assert(key < KEY_MAX); split_at(i), split_at(i + 1); rev[i] = 0, root[i] = new_node(); set_rec(root[i], 0, KEY_MAX, key, x); seg.set(i, x); } X prod_all() { return seg.prod_all(); } X prod(int l, int r) { if (pid > NODES * 0.9) rebuild(); split_at(l), split_at(r); return seg.prod(l, r); } void sort_inc(int l, int r) { split_at(l), split_at(r); while (1) { if (pid > NODES * 0.9) rebuild(); np c = root[l]; int i = ss.next(l + 1); if (i == r) break; root[l] = merge(c, root[i]); ss.erase(i), seg.set(i, MX::unit()); } rev[l] = 0, seg.set(l, root[l]->x); }; void sort_dec(int l, int r) { if (pid > NODES * 0.9) rebuild(); sort_inc(l, r), rev[l] = 1; seg.set(l, root[l]->rev_x); }; pair<vc<int>, vc<X>> get_all() { vector<int> key; vector<X> dat; key.reserve(N); dat.reserve(N); auto dfs = [&](auto& dfs, np n, int l, int r, bool rev) -> void { if (!n) return; if (r == l + 1) { key.eb(l), dat.eb(n->x); return; } int m = (l + r) / 2; if (!rev) { dfs(dfs, n->l, l, m, rev), dfs(dfs, n->r, m, r, rev); } if (rev) { dfs(dfs, n->r, m, r, rev), dfs(dfs, n->l, l, m, rev); } }; for (int i = 0; i < N; ++i) { if (ss[i]) dfs(dfs, root[i], 0, KEY_MAX, rev[i]); } return {key, dat}; } private: void init(vector<int>& key, vector<X>& dat) { rev.assign(N, 0), root.clear(), root.reserve(N); seg.build(N, [&](int i) -> X { return dat[i]; }); for (int i = 0; i < N; ++i) { ss.insert(i); root.eb(new_node(MX::unit())); assert(key[i] < KEY_MAX); set_rec(root[i], 0, KEY_MAX, key[i], dat[i]); } } // x が左端になるようにする void split_at(int x) { if (x == N || ss[x]) return; int a = ss.prev(x), b = ss.next(a + 1); ss.insert(x); if (!rev[a]) { auto [nl, nr] = split(root[a], x - a); root[a] = nl, root[x] = nr; rev[a] = rev[x] = 0; seg.set(a, root[a]->x), seg.set(x, root[x]->x); } else { auto [nl, nr] = split(root[a], b - x); root[a] = nr, root[x] = nl; rev[a] = rev[x] = 1; seg.set(a, root[a]->rev_x), seg.set(x, root[x]->rev_x); } } void rebuild() { auto [key, dat] = get_all(); pid = 0; init(key, dat); } np new_node(X x = MX::unit()) { assert(pid < NODES); pool[pid].x = pool[pid].rev_x = x; pool[pid].l = pool[pid].r = nullptr; pool[pid].size = 1; return &(pool[pid++]); } pair<np, np> split(np n, int k) { if (k == 0) { return {nullptr, n}; } if (k == n->size) { return {n, nullptr}; } int s = (n->l ? n->l->size : 0); Node* b = new_node(); if (k <= s) { auto [nl, nr] = split(n->l, k); b->l = nr, b->r = n->r, n->l = nl, n->r = nullptr; } if (k > s) { auto [nl, nr] = split(n->r, k - s); n->l = n->l, n->r = nl, b->l = nullptr, b->r = nr; } update(n), update(b); return {n, b}; } np merge(np a, np b) { if (!a) return b; if (!b) return a; a->l = merge(a->l, b->l), a->r = merge(a->r, b->r); update(a); return a; } void update(np n) { if (!(n->l) && !(n->r)) { return; } if (!(n->l)) { n->x = n->r->x, n->rev_x = n->r->rev_x, n->size = n->r->size; return; } if (!(n->r)) { n->x = n->l->x, n->rev_x = n->l->rev_x, n->size = n->l->size; return; } n->x = MX::op(n->l->x, n->r->x); n->rev_x = MX::op(n->r->rev_x, n->l->rev_x); n->size = n->l->size + n->r->size; } void set_rec(np n, int l, int r, int k, const X& x) { if (r == l + 1) { n->x = n->rev_x = x; return; } int m = (l + r) / 2; if (k < m) { if (!(n->l)) n->l = new_node(); set_rec(n->l, l, m, k, x); } if (m <= k) { if (!(n->r)) n->r = new_node(); set_rec(n->r, m, r, k, x); } update(n); } }; #line 2 "alg/monoid/affine.hpp" // op(F, G) = comp(G,F), F のあとで G template <typename K> struct Monoid_Affine { using F = pair<K, K>; using value_type = F; using X = value_type; static constexpr F op(const F &x, const F &y) noexcept { return F({x.first * y.first, x.second * y.first + y.second}); } static constexpr F inverse(const F &x) { auto [a, b] = x; a = K(1) / a; return {a, a * (-b)}; } static constexpr K eval(const F &f, K x) noexcept { return f.first * x + f.second; } static constexpr F unit() { return {K(1), K(0)}; } static constexpr bool commute = false; }; #line 2 "mod/modint_common.hpp" struct has_mod_impl { template <class T> static auto check(T &&x) -> decltype(x.get_mod(), std::true_type{}); template <class T> static auto check(...) -> std::false_type; }; template <class T> class has_mod : public decltype(has_mod_impl::check<T>(std::declval<T>())) {}; template <typename mint> mint inv(int n) { static const int mod = mint::get_mod(); static vector<mint> dat = {0, 1}; assert(0 <= n); if (n >= mod) n %= mod; while (len(dat) <= n) { int k = len(dat); int q = (mod + k - 1) / k; dat.eb(dat[k * q - mod] * mint::raw(q)); } return dat[n]; } template <typename mint> mint fact(int n) { static const int mod = mint::get_mod(); assert(0 <= n && n < mod); static vector<mint> dat = {1, 1}; while (len(dat) <= n) dat.eb(dat[len(dat) - 1] * mint::raw(len(dat))); return dat[n]; } template <typename mint> mint fact_inv(int n) { static vector<mint> dat = {1, 1}; if (n < 0) return mint(0); while (len(dat) <= n) dat.eb(dat[len(dat) - 1] * inv<mint>(len(dat))); return dat[n]; } template <class mint, class... Ts> mint fact_invs(Ts... xs) { return (mint(1) * ... * fact_inv<mint>(xs)); } template <typename mint, class Head, class... Tail> mint multinomial(Head &&head, Tail &&... tail) { return fact<mint>(head) * fact_invs<mint>(std::forward<Tail>(tail)...); } template <typename mint> mint C_dense(int n, int k) { static vvc<mint> C; static int H = 0, W = 0; auto calc = [&](int i, int j) -> mint { if (i == 0) return (j == 0 ? mint(1) : mint(0)); return C[i - 1][j] + (j ? C[i - 1][j - 1] : 0); }; if (W <= k) { FOR(i, H) { C[i].resize(k + 1); FOR(j, W, k + 1) { C[i][j] = calc(i, j); } } W = k + 1; } if (H <= n) { C.resize(n + 1); FOR(i, H, n + 1) { C[i].resize(W); FOR(j, W) { C[i][j] = calc(i, j); } } H = n + 1; } return C[n][k]; } template <typename mint, bool large = false, bool dense = false> mint C(ll n, ll k) { assert(n >= 0); if (k < 0 || n < k) return 0; if constexpr (dense) return C_dense<mint>(n, k); if constexpr (!large) return multinomial<mint>(n, k, n - k); k = min(k, n - k); mint x(1); FOR(i, k) x *= mint(n - i); return x * fact_inv<mint>(k); } template <typename mint, bool large = false> mint C_inv(ll n, ll k) { assert(n >= 0); assert(0 <= k && k <= n); if (!large) return fact_inv<mint>(n) * fact<mint>(k) * fact<mint>(n - k); return mint(1) / C<mint, 1>(n, k); } // [x^d](1-x)^{-n} template <typename mint, bool large = false, bool dense = false> mint C_negative(ll n, ll d) { assert(n >= 0); if (d < 0) return mint(0); if (n == 0) { return (d == 0 ? mint(1) : mint(0)); } return C<mint, large, dense>(n + d - 1, d); } #line 3 "mod/modint.hpp" template <int mod> struct modint { static constexpr u32 umod = u32(mod); static_assert(umod < u32(1) << 31); u32 val; static modint raw(u32 v) { modint x; x.val = v; return x; } constexpr modint() : val(0) {} constexpr modint(u32 x) : val(x % umod) {} constexpr modint(u64 x) : val(x % umod) {} constexpr modint(u128 x) : val(x % umod) {} constexpr modint(int x) : val((x %= mod) < 0 ? x + mod : x){}; constexpr modint(ll x) : val((x %= mod) < 0 ? x + mod : x){}; constexpr modint(i128 x) : val((x %= mod) < 0 ? x + mod : x){}; bool operator<(const modint &other) const { return val < other.val; } modint &operator+=(const modint &p) { if ((val += p.val) >= umod) val -= umod; return *this; } modint &operator-=(const modint &p) { if ((val += umod - p.val) >= umod) val -= umod; return *this; } modint &operator*=(const modint &p) { val = u64(val) * p.val % umod; return *this; } modint &operator/=(const modint &p) { *this *= p.inverse(); return *this; } modint operator-() const { return modint::raw(val ? mod - val : u32(0)); } modint operator+(const modint &p) const { return modint(*this) += p; } modint operator-(const modint &p) const { return modint(*this) -= p; } modint operator*(const modint &p) const { return modint(*this) *= p; } modint operator/(const modint &p) const { return modint(*this) /= p; } bool operator==(const modint &p) const { return val == p.val; } bool operator!=(const modint &p) const { return val != p.val; } modint inverse() const { int a = val, b = mod, u = 1, v = 0, t; while (b > 0) { t = a / b; swap(a -= t * b, b), swap(u -= t * v, v); } return modint(u); } modint pow(ll n) const { assert(n >= 0); modint ret(1), mul(val); while (n > 0) { if (n & 1) ret *= mul; mul *= mul; n >>= 1; } return ret; } static constexpr int get_mod() { return mod; } // (n, r), r は 1 の 2^n 乗根 static constexpr pair<int, int> ntt_info() { if (mod == 120586241) return {20, 74066978}; if (mod == 167772161) return {25, 17}; if (mod == 469762049) return {26, 30}; if (mod == 754974721) return {24, 362}; if (mod == 880803841) return {23, 211}; if (mod == 943718401) return {22, 663003469}; if (mod == 998244353) return {23, 31}; if (mod == 1004535809) return {21, 836905998}; if (mod == 1045430273) return {20, 363}; if (mod == 1051721729) return {20, 330}; if (mod == 1053818881) return {20, 2789}; return {-1, -1}; } static constexpr bool can_ntt() { return ntt_info().fi != -1; } }; #ifdef FASTIO template <int mod> void rd(modint<mod> &x) { fastio::rd(x.val); x.val %= mod; // assert(0 <= x.val && x.val < mod); } template <int mod> void wt(modint<mod> x) { fastio::wt(x.val); } #endif using modint107 = modint<1000000007>; using modint998 = modint<998244353>; #line 7 "test/2_library_checker/data_structure/sort_segtree.test.cpp" using mint = modint998; void solve() { // クエリ先読みする方 using AFF = Monoid_Affine<mint>; LL(N, Q); vc<int> key(N); vc<pair<mint, mint>> seg_raw(N); FOR(i, N) { read(key[i]), read(seg_raw[i]); } vc<int> all_key = key; using QT = tuple<int, int, int, int, int>; vc<QT> query(Q); FOR(q, Q) { LL(t); if (t == 0) { LL(i, p, a, b); query[q] = {t, i, p, a, b}; all_key.eb(p); } if (t == 1) { LL(l, r, x); query[q] = {t, l, r, x, 0}; } if (t == 2 || t == 3) { LL(l, r); query[q] = {t, l, r, 0, 0}; } } UNIQUE(all_key); for (auto&& k: key) k = LB(all_key, k); Sortable_SegTree<AFF> seg(4000000, len(all_key), key, seg_raw); for (auto&& [t, a, b, c, d]: query) { if (t == 0) { b = LB(all_key, b); seg.set(a, b, {mint(c), mint(d)}); } if (t == 1) { auto f = seg.prod(a, b); print(AFF::eval(f, c)); } if (t == 2) { seg.sort_inc(a, b); } if (t == 3) { seg.sort_dec(a, b); } } } signed main() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << setprecision(15); ll T = 1; FOR(T) solve(); return 0; }