library

This documentation is automatically generated by online-judge-tools/verification-helper

View the Project on GitHub maspypy/library

:heavy_check_mark: test/2_library_checker/data_structure/persistent_range_affine_range_sum.test.cpp

Depends on

Code

#define PROBLEM "https://judge.yosupo.jp/problem/persistent_range_affine_range_sum"

#include "my_template.hpp"
#include "other/io.hpp"

#include "ds/segtree/dynamic_lazy_segtree.hpp"
#include "alg/acted_monoid/sum_affine.hpp"
#include "mod/modint.hpp"

using mint = modint998;

void solve() {
  LL(N, Q);
  VEC(mint, A, N);
  using AM = ActedMonoid_Sum_Affine<mint>;
  Dynamic_Lazy_SegTree<AM, true> seg(10000000, 0, N);
  using np = decltype(seg)::np;
  vc<np> root(Q + 1);
  root[0] = seg.new_node(A);

  FOR(q, 1, Q + 1) {
    INT(t);
    if (t == 0) {
      INT(k, L, R, b, c);
      ++k;
      root[q] = seg.apply(root[k], L, R, {mint(b), mint(c)});
    }
    if (t == 1) {
      INT(k, s, l, r);
      ++k, ++s;
      root[q] = seg.copy_interval(root[k], root[s], l, r, {mint(1), mint(0)});
    }
    if (t == 2) {
      INT(k, l, r);
      ++k;
      root[q] = root[k];
      mint ANS = seg.prod(root[q], l, r);
      print(ANS);
    }
  }
}

signed main() { solve(); }
#line 1 "test/2_library_checker/data_structure/persistent_range_affine_range_sum.test.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/persistent_range_affine_range_sum"

#line 1 "my_template.hpp"
#if defined(LOCAL)
#include <my_template_compiled.hpp>
#else

// https://codeforces.com/blog/entry/96344
#pragma GCC optimize("Ofast,unroll-loops")
// いまの CF だとこれ入れると動かない?
// #pragma GCC target("avx2,popcnt")

#include <bits/stdc++.h>

using namespace std;

using ll = long long;
using u8 = uint8_t;
using u16 = uint16_t;
using u32 = uint32_t;
using u64 = uint64_t;
using i128 = __int128;
using u128 = unsigned __int128;
using f128 = __float128;

template <class T>
constexpr T infty = 0;
template <>
constexpr int infty<int> = 1'010'000'000;
template <>
constexpr ll infty<ll> = 2'020'000'000'000'000'000;
template <>
constexpr u32 infty<u32> = infty<int>;
template <>
constexpr u64 infty<u64> = infty<ll>;
template <>
constexpr i128 infty<i128> = i128(infty<ll>) * 2'000'000'000'000'000'000;
template <>
constexpr double infty<double> = infty<ll>;
template <>
constexpr long double infty<long double> = infty<ll>;

using pi = pair<ll, ll>;
using vi = vector<ll>;
template <class T>
using vc = vector<T>;
template <class T>
using vvc = vector<vc<T>>;
template <class T>
using vvvc = vector<vvc<T>>;
template <class T>
using vvvvc = vector<vvvc<T>>;
template <class T>
using vvvvvc = vector<vvvvc<T>>;
template <class T>
using pq = priority_queue<T>;
template <class T>
using pqg = priority_queue<T, vector<T>, greater<T>>;

#define vv(type, name, h, ...) vector<vector<type>> name(h, vector<type>(__VA_ARGS__))
#define vvv(type, name, h, w, ...) vector<vector<vector<type>>> name(h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))
#define vvvv(type, name, a, b, c, ...) \
  vector<vector<vector<vector<type>>>> name(a, vector<vector<vector<type>>>(b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))

// https://trap.jp/post/1224/
#define FOR1(a) for (ll _ = 0; _ < ll(a); ++_)
#define FOR2(i, a) for (ll i = 0; i < ll(a); ++i)
#define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i)
#define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c))
#define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i)
#define overload4(a, b, c, d, e, ...) e
#define overload3(a, b, c, d, ...) d
#define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__)
#define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__)

#define all(x) x.begin(), x.end()
#define len(x) ll(x.size())
#define elif else if

#define eb emplace_back
#define mp make_pair
#define mt make_tuple
#define fi first
#define se second

#define stoi stoll

int popcnt(int x) { return __builtin_popcount(x); }
int popcnt(u32 x) { return __builtin_popcount(x); }
int popcnt(ll x) { return __builtin_popcountll(x); }
int popcnt(u64 x) { return __builtin_popcountll(x); }
int popcnt_sgn(int x) { return (__builtin_parity(unsigned(x)) & 1 ? -1 : 1); }
int popcnt_sgn(u32 x) { return (__builtin_parity(x) & 1 ? -1 : 1); }
int popcnt_sgn(ll x) { return (__builtin_parityll(x) & 1 ? -1 : 1); }
int popcnt_sgn(u64 x) { return (__builtin_parityll(x) & 1 ? -1 : 1); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2)
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2)
int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }

template <typename T>
T kth_bit(int k) {
  return T(1) << k;
}
template <typename T>
bool has_kth_bit(T x, int k) {
  return x >> k & 1;
}

template <typename UINT>
struct all_bit {
  struct iter {
    UINT s;
    iter(UINT s) : s(s) {}
    int operator*() const { return lowbit(s); }
    iter &operator++() {
      s &= s - 1;
      return *this;
    }
    bool operator!=(const iter) const { return s != 0; }
  };
  UINT s;
  all_bit(UINT s) : s(s) {}
  iter begin() const { return iter(s); }
  iter end() const { return iter(0); }
};

template <typename UINT>
struct all_subset {
  static_assert(is_unsigned<UINT>::value);
  struct iter {
    UINT s, t;
    bool ed;
    iter(UINT s) : s(s), t(s), ed(0) {}
    int operator*() const { return s ^ t; }
    iter &operator++() {
      (t == 0 ? ed = 1 : t = (t - 1) & s);
      return *this;
    }
    bool operator!=(const iter) const { return !ed; }
  };
  UINT s;
  all_subset(UINT s) : s(s) {}
  iter begin() const { return iter(s); }
  iter end() const { return iter(0); }
};

template <typename T>
T floor(T a, T b) {
  return a / b - (a % b && (a ^ b) < 0);
}
template <typename T>
T ceil(T x, T y) {
  return floor(x + y - 1, y);
}
template <typename T>
T bmod(T x, T y) {
  return x - y * floor(x, y);
}
template <typename T>
pair<T, T> divmod(T x, T y) {
  T q = floor(x, y);
  return {q, x - q * y};
}

template <typename T, typename U>
T SUM(const vector<U> &A) {
  T sm = 0;
  for (auto &&a: A) sm += a;
  return sm;
}

#define MIN(v) *min_element(all(v))
#define MAX(v) *max_element(all(v))
#define LB(c, x) distance((c).begin(), lower_bound(all(c), (x)))
#define UB(c, x) distance((c).begin(), upper_bound(all(c), (x)))
#define UNIQUE(x) sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit()

template <typename T>
T POP(deque<T> &que) {
  T a = que.front();
  que.pop_front();
  return a;
}
template <typename T>
T POP(pq<T> &que) {
  T a = que.top();
  que.pop();
  return a;
}
template <typename T>
T POP(pqg<T> &que) {
  T a = que.top();
  que.pop();
  return a;
}
template <typename T>
T POP(vc<T> &que) {
  T a = que.back();
  que.pop_back();
  return a;
}

template <typename F>
ll binary_search(F check, ll ok, ll ng, bool check_ok = true) {
  if (check_ok) assert(check(ok));
  while (abs(ok - ng) > 1) {
    auto x = (ng + ok) / 2;
    (check(x) ? ok : ng) = x;
  }
  return ok;
}
template <typename F>
double binary_search_real(F check, double ok, double ng, int iter = 100) {
  FOR(iter) {
    double x = (ok + ng) / 2;
    (check(x) ? ok : ng) = x;
  }
  return (ok + ng) / 2;
}

template <class T, class S>
inline bool chmax(T &a, const S &b) {
  return (a < b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chmin(T &a, const S &b) {
  return (a > b ? a = b, 1 : 0);
}

// ? は -1
vc<int> s_to_vi(const string &S, char first_char) {
  vc<int> A(S.size());
  FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); }
  return A;
}

template <typename T, typename U>
vector<T> cumsum(vector<U> &A, int off = 1) {
  int N = A.size();
  vector<T> B(N + 1);
  FOR(i, N) { B[i + 1] = B[i] + A[i]; }
  if (off == 0) B.erase(B.begin());
  return B;
}

// stable sort
template <typename T>
vector<int> argsort(const vector<T> &A) {
  vector<int> ids(len(A));
  iota(all(ids), 0);
  sort(all(ids), [&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); });
  return ids;
}

// A[I[0]], A[I[1]], ...
template <typename T>
vc<T> rearrange(const vc<T> &A, const vc<int> &I) {
  vc<T> B(len(I));
  FOR(i, len(I)) B[i] = A[I[i]];
  return B;
}

template <typename T, typename... Vectors>
void concat(vc<T> &first, const Vectors &... others) {
  vc<T> &res = first;
  (res.insert(res.end(), others.begin(), others.end()), ...);
}
#endif
#line 1 "other/io.hpp"
#define FASTIO
#include <unistd.h>


// https://judge.yosupo.jp/submission/21623

namespace fastio {
static constexpr uint32_t SZ = 1 << 17;
char ibuf[SZ];
char obuf[SZ];
char out[100];
// pointer of ibuf, obuf

uint32_t pil = 0, pir = 0, por = 0;

struct Pre {
  char num[10000][4];
  constexpr Pre() : num() {
    for (int i = 0; i < 10000; i++) {
      int n = i;
      for (int j = 3; j >= 0; j--) {
        num[i][j] = n % 10 | '0';
        n /= 10;
      }
    }
  }
} constexpr pre;

inline void load() {
  memcpy(ibuf, ibuf + pil, pir - pil);
  pir = pir - pil + fread(ibuf + pir - pil, 1, SZ - pir + pil, stdin);
  pil = 0;
  if (pir < SZ) ibuf[pir++] = '\n';
}

inline void flush() {
  fwrite(obuf, 1, por, stdout);
  por = 0;
}

void rd(char &c) {
  do {
    if (pil + 1 > pir) load();
    c = ibuf[pil++];
  } while (isspace(c));
}

void rd(string &x) {
  x.clear();
  char c;
  do {
    if (pil + 1 > pir) load();
    c = ibuf[pil++];
  } while (isspace(c));
  do {
    x += c;
    if (pil == pir) load();
    c = ibuf[pil++];
  } while (!isspace(c));
}

template <typename T>
void rd_real(T &x) {
  string s;
  rd(s);
  x = stod(s);
}

template <typename T>
void rd_integer(T &x) {
  if (pil + 100 > pir) load();
  char c;
  do
    c = ibuf[pil++];
  while (c < '-');
  bool minus = 0;
  if constexpr (is_signed<T>::value || is_same_v<T, i128>) {
    if (c == '-') { minus = 1, c = ibuf[pil++]; }
  }
  x = 0;
  while ('0' <= c) { x = x * 10 + (c & 15), c = ibuf[pil++]; }
  if constexpr (is_signed<T>::value || is_same_v<T, i128>) {
    if (minus) x = -x;
  }
}

void rd(int &x) { rd_integer(x); }
void rd(ll &x) { rd_integer(x); }
void rd(i128 &x) { rd_integer(x); }
void rd(u32 &x) { rd_integer(x); }
void rd(u64 &x) { rd_integer(x); }
void rd(u128 &x) { rd_integer(x); }
void rd(double &x) { rd_real(x); }
void rd(long double &x) { rd_real(x); }
void rd(f128 &x) { rd_real(x); }

template <class T, class U>
void rd(pair<T, U> &p) {
  return rd(p.first), rd(p.second);
}
template <size_t N = 0, typename T>
void rd_tuple(T &t) {
  if constexpr (N < std::tuple_size<T>::value) {
    auto &x = std::get<N>(t);
    rd(x);
    rd_tuple<N + 1>(t);
  }
}
template <class... T>
void rd(tuple<T...> &tpl) {
  rd_tuple(tpl);
}

template <size_t N = 0, typename T>
void rd(array<T, N> &x) {
  for (auto &d: x) rd(d);
}
template <class T>
void rd(vc<T> &x) {
  for (auto &d: x) rd(d);
}

void read() {}
template <class H, class... T>
void read(H &h, T &... t) {
  rd(h), read(t...);
}

void wt(const char c) {
  if (por == SZ) flush();
  obuf[por++] = c;
}
void wt(const string s) {
  for (char c: s) wt(c);
}
void wt(const char *s) {
  size_t len = strlen(s);
  for (size_t i = 0; i < len; i++) wt(s[i]);
}

template <typename T>
void wt_integer(T x) {
  if (por > SZ - 100) flush();
  if (x < 0) { obuf[por++] = '-', x = -x; }
  int outi;
  for (outi = 96; x >= 10000; outi -= 4) {
    memcpy(out + outi, pre.num[x % 10000], 4);
    x /= 10000;
  }
  if (x >= 1000) {
    memcpy(obuf + por, pre.num[x], 4);
    por += 4;
  } else if (x >= 100) {
    memcpy(obuf + por, pre.num[x] + 1, 3);
    por += 3;
  } else if (x >= 10) {
    int q = (x * 103) >> 10;
    obuf[por] = q | '0';
    obuf[por + 1] = (x - q * 10) | '0';
    por += 2;
  } else
    obuf[por++] = x | '0';
  memcpy(obuf + por, out + outi + 4, 96 - outi);
  por += 96 - outi;
}

template <typename T>
void wt_real(T x) {
  ostringstream oss;
  oss << fixed << setprecision(15) << double(x);
  string s = oss.str();
  wt(s);
}

void wt(int x) { wt_integer(x); }
void wt(ll x) { wt_integer(x); }
void wt(i128 x) { wt_integer(x); }
void wt(u32 x) { wt_integer(x); }
void wt(u64 x) { wt_integer(x); }
void wt(u128 x) { wt_integer(x); }
void wt(double x) { wt_real(x); }
void wt(long double x) { wt_real(x); }
void wt(f128 x) { wt_real(x); }

template <class T, class U>
void wt(const pair<T, U> val) {
  wt(val.first);
  wt(' ');
  wt(val.second);
}
template <size_t N = 0, typename T>
void wt_tuple(const T t) {
  if constexpr (N < std::tuple_size<T>::value) {
    if constexpr (N > 0) { wt(' '); }
    const auto x = std::get<N>(t);
    wt(x);
    wt_tuple<N + 1>(t);
  }
}
template <class... T>
void wt(tuple<T...> tpl) {
  wt_tuple(tpl);
}
template <class T, size_t S>
void wt(const array<T, S> val) {
  auto n = val.size();
  for (size_t i = 0; i < n; i++) {
    if (i) wt(' ');
    wt(val[i]);
  }
}
template <class T>
void wt(const vector<T> val) {
  auto n = val.size();
  for (size_t i = 0; i < n; i++) {
    if (i) wt(' ');
    wt(val[i]);
  }
}

void print() { wt('\n'); }
template <class Head, class... Tail>
void print(Head &&head, Tail &&... tail) {
  wt(head);
  if (sizeof...(Tail)) wt(' ');
  print(forward<Tail>(tail)...);
}

// gcc expansion. called automaticall after main.

void __attribute__((destructor)) _d() { flush(); }
} // namespace fastio

using fastio::read;
using fastio::print;
using fastio::flush;

#if defined(LOCAL)
#define SHOW(...) SHOW_IMPL(__VA_ARGS__, SHOW6, SHOW5, SHOW4, SHOW3, SHOW2, SHOW1)(__VA_ARGS__)
#define SHOW_IMPL(_1, _2, _3, _4, _5, _6, NAME, ...) NAME
#define SHOW1(x) print(#x, "=", (x)), flush()
#define SHOW2(x, y) print(#x, "=", (x), #y, "=", (y)), flush()
#define SHOW3(x, y, z) print(#x, "=", (x), #y, "=", (y), #z, "=", (z)), flush()
#define SHOW4(x, y, z, w) print(#x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w)), flush()
#define SHOW5(x, y, z, w, v) print(#x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w), #v, "=", (v)), flush()
#define SHOW6(x, y, z, w, v, u) print(#x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w), #v, "=", (v), #u, "=", (u)), flush()
#else
#define SHOW(...)
#endif

#define INT(...)   \
  int __VA_ARGS__; \
  read(__VA_ARGS__)
#define LL(...)   \
  ll __VA_ARGS__; \
  read(__VA_ARGS__)
#define U32(...)   \
  u32 __VA_ARGS__; \
  read(__VA_ARGS__)
#define U64(...)   \
  u64 __VA_ARGS__; \
  read(__VA_ARGS__)
#define STR(...)      \
  string __VA_ARGS__; \
  read(__VA_ARGS__)
#define CHAR(...)   \
  char __VA_ARGS__; \
  read(__VA_ARGS__)
#define DBL(...)      \
  double __VA_ARGS__; \
  read(__VA_ARGS__)

#define VEC(type, name, size) \
  vector<type> name(size);    \
  read(name)
#define VV(type, name, h, w)                     \
  vector<vector<type>> name(h, vector<type>(w)); \
  read(name)

void YES(bool t = 1) { print(t ? "YES" : "NO"); }
void NO(bool t = 1) { YES(!t); }
void Yes(bool t = 1) { print(t ? "Yes" : "No"); }
void No(bool t = 1) { Yes(!t); }
void yes(bool t = 1) { print(t ? "yes" : "no"); }
void no(bool t = 1) { yes(!t); }
void YA(bool t = 1) { print(t ? "YA" : "TIDAK"); }
void TIDAK(bool t = 1) { YES(!t); }
#line 5 "test/2_library_checker/data_structure/persistent_range_affine_range_sum.test.cpp"

#line 2 "ds/segtree/dynamic_lazy_segtree.hpp"

// Q*4logN 程度必要? apply で 4logN ノード作っていると思う
template <typename ActedMonoid, bool PERSISTENT>
struct Dynamic_Lazy_SegTree {
  using AM = ActedMonoid;
  using MX = typename AM::Monoid_X;
  using MA = typename AM::Monoid_A;
  using X = typename AM::X;
  using A = typename AM::A;
  using F = function<X(ll, ll)>;
  F default_prod;

  struct Node {
    Node *l, *r;
    X x;
    A lazy;
  };

  const int NODES;
  const ll L0, R0;
  Node *pool;
  int pid;
  using np = Node *;

  Dynamic_Lazy_SegTree(
      int NODES, ll L0, ll R0, F default_prod = [](ll, ll) -> X { return MX::unit(); })
      : default_prod(default_prod), NODES(NODES), L0(L0), R0(R0), pid(0) {
    pool = new Node[NODES];
  }
  ~Dynamic_Lazy_SegTree() { delete[] pool; }

  np new_root() { return new_node(L0, R0); }

  np new_node(const X x) {
    assert(pid < NODES);
    pool[pid].l = pool[pid].r = nullptr;
    pool[pid].x = x;
    pool[pid].lazy = MA::unit();
    return &(pool[pid++]);
  }

  np new_node(ll l, ll r) {
    assert(l < r);
    return new_node(default_prod(l, r));
  }
  np new_node() { return new_node(L0, R0); }

  np new_node(const vc<X> &dat) {
    assert(L0 == 0 && R0 == len(dat));
    auto dfs = [&](auto &dfs, ll l, ll r) -> Node * {
      if (l == r) return nullptr;
      if (r == l + 1) return new_node(dat[l]);
      ll m = (l + r) / 2;
      np l_root = dfs(dfs, l, m), r_root = dfs(dfs, m, r);
      X x = MX::op(l_root->x, r_root->x);
      np root = new_node(x);
      root->l = l_root, root->r = r_root;
      return root;
    };
    return dfs(dfs, 0, len(dat));
  }

  X prod(np root, ll l, ll r) {
    if (l == r || !root) return MX::unit();
    assert(pid && L0 <= l && l < r && r <= R0);
    X x = MX::unit();
    prod_rec(root, L0, R0, l, r, x, MA::unit());
    return x;
  }

  X prod_all(np root) { return prod(root, L0, R0); }

  np set(np root, ll i, const X &x) {
    assert(pid && L0 <= i && i < R0);
    return set_rec(root, L0, R0, i, x);
  }

  np multiply(np root, ll i, const X &x) {
    assert(pid && L0 <= i && i < R0);
    return multiply_rec(root, L0, R0, i, x);
  }

  np apply(np root, ll l, ll r, const A &a) {
    if (l == r) return root;
    assert(pid && L0 <= l && l < r && r <= R0);
    return apply_rec(root, L0, R0, l, r, a);
  }

  template <typename F>
  ll max_right(np root, F check, ll L) {
    assert(pid && L0 <= L && L <= R0 && check(MX::unit()));
    X x = MX::unit();
    return max_right_rec(root, check, L0, R0, L, x);
  }

  template <typename F>
  ll min_left(np root, F check, ll R) {
    assert(pid && L0 <= R && R <= R0 && check(MX::unit()));
    X x = MX::unit();
    return min_left_rec(root, check, L0, R0, R, x);
  }

  // f(idx, val)
  template <typename F>
  void enumerate(np root, F f) {
    auto dfs = [&](auto &dfs, np c, ll l, ll r, A a) -> void {
      if (!c) return;
      if (r - l == 1) {
        f(l, AM::act(c->x, a, 1));
        return;
      }
      ll m = (l + r) / 2;
      a = MA::op(c->lazy, a);
      dfs(dfs, c->l, l, m, a);
      dfs(dfs, c->r, m, r, a);
    };
    dfs(dfs, root, L0, R0, MA::unit());
  }

  void reset() { pid = 0; }

  // root[l:r) を apply(other[l:r),a) で上書きしたものを返す
  np copy_interval(np root, np other, ll l, ll r, A a) {
    if (root == other) return root;
    root = copy_node(root);
    copy_interval_rec(root, other, L0, R0, l, r, a);
    return root;
  }

private:
  np copy_node(np c) {
    if (!c || !PERSISTENT) return c;
    pool[pid].l = c->l, pool[pid].r = c->r;
    pool[pid].x = c->x;
    pool[pid].lazy = c->lazy;
    return &(pool[pid++]);
  }

  void prop(np c, ll l, ll r) {
    assert(r - l >= 2);
    ll m = (l + r) / 2;
    if (c->lazy == MA::unit()) return;
    c->l = (c->l ? copy_node(c->l) : new_node(l, m));
    c->l->x = AM::act(c->l->x, c->lazy, m - l);
    c->l->lazy = MA::op(c->l->lazy, c->lazy);
    c->r = (c->r ? copy_node(c->r) : new_node(m, r));
    c->r->x = AM::act(c->r->x, c->lazy, r - m);
    c->r->lazy = MA::op(c->r->lazy, c->lazy);
    c->lazy = MA::unit();
  }

  void copy_interval_rec(np c, np d, ll l, ll r, ll ql, ll qr, A a) {
    // c[ql,qr) <- apply(d[ql,qr),a)
    // もう c は新しくしてある
    assert(c);
    chmax(ql, l), chmin(qr, r);
    if (ql >= qr) return;
    if (l == ql && r == qr) {
      if (d) {
        c->x = AM::act(d->x, a, r - l), c->lazy = MA::op(d->lazy, a);
        c->l = d->l, c->r = d->r;
      } else {
        c->x = AM::act(default_prod(l, r), a, r - l), c->lazy = a;
        c->l = nullptr, c->r = nullptr;
      }
      return;
    }
    // push
    ll m = (l + r) / 2;
    c->l = (c->l ? copy_node(c->l) : new_node());
    c->r = (c->r ? copy_node(c->r) : new_node());
    c->l->x = AM::act(c->l->x, c->lazy, m - l);
    c->l->lazy = MA::op(c->l->lazy, c->lazy);
    c->r->x = AM::act(c->r->x, c->lazy, r - m);
    c->r->lazy = MA::op(c->r->lazy, c->lazy);
    c->lazy = MA::unit();
    if (d) a = MA::op(d->lazy, a);
    copy_interval_rec(c->l, (d && d->l ? d->l : nullptr), l, m, ql, qr, a);
    copy_interval_rec(c->r, (d && d->r ? d->r : nullptr), m, r, ql, qr, a);
    c->x = MX::op(c->l->x, c->r->x);
    return;
  }

  np set_rec(np c, ll l, ll r, ll i, const X &x) {
    if (r == l + 1) {
      c = copy_node(c);
      c->x = x;
      c->lazy = MA::unit();
      return c;
    }
    prop(c, l, r);
    ll m = (l + r) / 2;
    if (!c->l) c->l = new_node(l, m);
    if (!c->r) c->r = new_node(m, r);

    c = copy_node(c);
    if (i < m) {
      c->l = set_rec(c->l, l, m, i, x);
    } else {
      c->r = set_rec(c->r, m, r, i, x);
    }
    c->x = MX::op(c->l->x, c->r->x);
    return c;
  }

  np multiply_rec(np c, ll l, ll r, ll i, const X &x) {
    if (r == l + 1) {
      c = copy_node(c);
      c->x = MX::op(c->x, x);
      c->lazy = MA::unit();
      return c;
    }
    prop(c, l, r);
    ll m = (l + r) / 2;
    if (!c->l) c->l = new_node(l, m);
    if (!c->r) c->r = new_node(m, r);

    c = copy_node(c);
    if (i < m) {
      c->l = multiply_rec(c->l, l, m, i, x);
    } else {
      c->r = multiply_rec(c->r, m, r, i, x);
    }
    c->x = MX::op(c->l->x, c->r->x);
    return c;
  }

  void prod_rec(np c, ll l, ll r, ll ql, ll qr, X &x, A lazy) {
    chmax(ql, l);
    chmin(qr, r);
    if (ql >= qr) return;
    if (!c) {
      x = MX::op(x, AM::act(default_prod(ql, qr), lazy, qr - ql));
      return;
    }
    if (l == ql && r == qr) {
      x = MX::op(x, AM::act(c->x, lazy, r - l));
      return;
    }
    ll m = (l + r) / 2;
    lazy = MA::op(c->lazy, lazy);
    prod_rec(c->l, l, m, ql, qr, x, lazy);
    prod_rec(c->r, m, r, ql, qr, x, lazy);
  }

  np apply_rec(np c, ll l, ll r, ll ql, ll qr, const A &a) {
    if (!c) c = new_node(l, r);
    chmax(ql, l);
    chmin(qr, r);
    if (ql >= qr) return c;
    if (l == ql && r == qr) {
      c = copy_node(c);
      c->x = AM::act(c->x, a, r - l);
      c->lazy = MA::op(c->lazy, a);
      return c;
    }
    prop(c, l, r);
    ll m = (l + r) / 2;
    c = copy_node(c);
    c->l = apply_rec(c->l, l, m, ql, qr, a);
    c->r = apply_rec(c->r, m, r, ql, qr, a);
    c->x = MX::op(c->l->x, c->r->x);
    return c;
  }

  template <typename F>
  ll max_right_rec(np c, const F &check, ll l, ll r, ll ql, X &x) {
    if (r <= ql) return r;
    if (!c) c = new_node(l, r);
    chmax(ql, l);
    if (l == ql && check(MX::op(x, c->x))) {
      x = MX::op(x, c->x);
      return r;
    }
    if (r == l + 1) return l;
    prop(c, l, r);
    ll m = (l + r) / 2;
    ll k = max_right_rec(c->l, check, l, m, ql, x);
    if (k < m) return k;
    return max_right_rec(c->r, check, m, r, ql, x);
  }

  template <typename F>
  ll min_left_rec(np c, const F &check, ll l, ll r, ll qr, X &x) {
    if (qr <= l) return l;
    if (!c) c = new_node(l, r);
    chmin(qr, r);
    if (r == qr && check(MX::op(c->x, x))) {
      x = MX::op(c->x, x);
      return l;
    }
    if (r == l + 1) return r;
    prop(c, l, r);
    ll m = (l + r) / 2;
    ll k = min_left_rec(c->r, check, m, r, qr, x);
    if (m < k) return k;
    return min_left_rec(c->l, check, l, m, qr, x);
  }
};
#line 2 "alg/monoid/add.hpp"

template <typename E>
struct Monoid_Add {
  using X = E;
  using value_type = X;
  static constexpr X op(const X &x, const X &y) noexcept { return x + y; }
  static constexpr X inverse(const X &x) noexcept { return -x; }
  static constexpr X power(const X &x, ll n) noexcept { return X(n) * x; }
  static constexpr X unit() { return X(0); }
  static constexpr bool commute = true;
};
#line 2 "alg/monoid/affine.hpp"

// op(F, G) = comp(G,F), F のあとで G
template <typename K>
struct Monoid_Affine {
  using F = pair<K, K>;
  using value_type = F;
  using X = value_type;
  static constexpr F op(const F &x, const F &y) noexcept {
    return F({x.first * y.first, x.second * y.first + y.second});
  }
  static constexpr F inverse(const F &x) {
    auto [a, b] = x;
    a = K(1) / a;
    return {a, a * (-b)};
  }
  static constexpr K eval(const F &f, K x) noexcept {
    return f.first * x + f.second;
  }
  static constexpr F unit() { return {K(1), K(0)}; }
  static constexpr bool commute = false;
};
#line 3 "alg/acted_monoid/sum_affine.hpp"

template <typename E>
struct ActedMonoid_Sum_Affine {
  using Monoid_X = Monoid_Add<E>;
  using Monoid_A = Monoid_Affine<E>;
  using X = typename Monoid_X::value_type;
  using A = typename Monoid_A::value_type;
  static constexpr X act(const X &x, const A &a, const ll &size) {
    return x * a.fi + E(size) * a.se;
  }
};
#line 2 "mod/modint_common.hpp"

struct has_mod_impl {
  template <class T>
  static auto check(T &&x) -> decltype(x.get_mod(), std::true_type{});
  template <class T>
  static auto check(...) -> std::false_type;
};

template <class T>
class has_mod : public decltype(has_mod_impl::check<T>(std::declval<T>())) {};

template <typename mint>
mint inv(int n) {
  static const int mod = mint::get_mod();
  static vector<mint> dat = {0, 1};
  assert(0 <= n);
  if (n >= mod) n %= mod;
  while (len(dat) <= n) {
    int k = len(dat);
    int q = (mod + k - 1) / k;
    dat.eb(dat[k * q - mod] * mint::raw(q));
  }
  return dat[n];
}

template <typename mint>
mint fact(int n) {
  static const int mod = mint::get_mod();
  assert(0 <= n && n < mod);
  static vector<mint> dat = {1, 1};
  while (len(dat) <= n) dat.eb(dat[len(dat) - 1] * mint::raw(len(dat)));
  return dat[n];
}

template <typename mint>
mint fact_inv(int n) {
  static vector<mint> dat = {1, 1};
  if (n < 0) return mint(0);
  while (len(dat) <= n) dat.eb(dat[len(dat) - 1] * inv<mint>(len(dat)));
  return dat[n];
}

template <class mint, class... Ts>
mint fact_invs(Ts... xs) {
  return (mint(1) * ... * fact_inv<mint>(xs));
}

template <typename mint, class Head, class... Tail>
mint multinomial(Head &&head, Tail &&... tail) {
  return fact<mint>(head) * fact_invs<mint>(std::forward<Tail>(tail)...);
}

template <typename mint>
mint C_dense(int n, int k) {
  assert(n >= 0);
  if (k < 0 || n < k) return 0;
  static vvc<mint> C;
  static int H = 0, W = 0;
  auto calc = [&](int i, int j) -> mint {
    if (i == 0) return (j == 0 ? mint(1) : mint(0));
    return C[i - 1][j] + (j ? C[i - 1][j - 1] : 0);
  };
  if (W <= k) {
    FOR(i, H) {
      C[i].resize(k + 1);
      FOR(j, W, k + 1) { C[i][j] = calc(i, j); }
    }
    W = k + 1;
  }
  if (H <= n) {
    C.resize(n + 1);
    FOR(i, H, n + 1) {
      C[i].resize(W);
      FOR(j, W) { C[i][j] = calc(i, j); }
    }
    H = n + 1;
  }
  return C[n][k];
}

template <typename mint, bool large = false, bool dense = false>
mint C(ll n, ll k) {
  assert(n >= 0);
  if (k < 0 || n < k) return 0;
  if constexpr (dense) return C_dense<mint>(n, k);
  if constexpr (!large) return multinomial<mint>(n, k, n - k);
  k = min(k, n - k);
  mint x(1);
  FOR(i, k) x *= mint(n - i);
  return x * fact_inv<mint>(k);
}

template <typename mint, bool large = false>
mint C_inv(ll n, ll k) {
  assert(n >= 0);
  assert(0 <= k && k <= n);
  if (!large) return fact_inv<mint>(n) * fact<mint>(k) * fact<mint>(n - k);
  return mint(1) / C<mint, 1>(n, k);
}

// [x^d](1-x)^{-n}
template <typename mint, bool large = false, bool dense = false>
mint C_negative(ll n, ll d) {
  assert(n >= 0);
  if (d < 0) return mint(0);
  if (n == 0) { return (d == 0 ? mint(1) : mint(0)); }
  return C<mint, large, dense>(n + d - 1, d);
}
#line 3 "mod/modint.hpp"

template <int mod>
struct modint {
  static constexpr u32 umod = u32(mod);
  static_assert(umod < u32(1) << 31);
  u32 val;

  static modint raw(u32 v) {
    modint x;
    x.val = v;
    return x;
  }
  constexpr modint() : val(0) {}
  constexpr modint(u32 x) : val(x % umod) {}
  constexpr modint(u64 x) : val(x % umod) {}
  constexpr modint(u128 x) : val(x % umod) {}
  constexpr modint(int x) : val((x %= mod) < 0 ? x + mod : x){};
  constexpr modint(ll x) : val((x %= mod) < 0 ? x + mod : x){};
  constexpr modint(i128 x) : val((x %= mod) < 0 ? x + mod : x){};
  bool operator<(const modint &other) const { return val < other.val; }
  modint &operator+=(const modint &p) {
    if ((val += p.val) >= umod) val -= umod;
    return *this;
  }
  modint &operator-=(const modint &p) {
    if ((val += umod - p.val) >= umod) val -= umod;
    return *this;
  }
  modint &operator*=(const modint &p) {
    val = u64(val) * p.val % umod;
    return *this;
  }
  modint &operator/=(const modint &p) {
    *this *= p.inverse();
    return *this;
  }
  modint operator-() const { return modint::raw(val ? mod - val : u32(0)); }
  modint operator+(const modint &p) const { return modint(*this) += p; }
  modint operator-(const modint &p) const { return modint(*this) -= p; }
  modint operator*(const modint &p) const { return modint(*this) *= p; }
  modint operator/(const modint &p) const { return modint(*this) /= p; }
  bool operator==(const modint &p) const { return val == p.val; }
  bool operator!=(const modint &p) const { return val != p.val; }
  modint inverse() const {
    int a = val, b = mod, u = 1, v = 0, t;
    while (b > 0) {
      t = a / b;
      swap(a -= t * b, b), swap(u -= t * v, v);
    }
    return modint(u);
  }
  modint pow(ll n) const {
    assert(n >= 0);
    modint ret(1), mul(val);
    while (n > 0) {
      if (n & 1) ret *= mul;
      mul *= mul;
      n >>= 1;
    }
    return ret;
  }
  static constexpr int get_mod() { return mod; }
  // (n, r), r は 1 の 2^n 乗根
  static constexpr pair<int, int> ntt_info() {
    if (mod == 120586241) return {20, 74066978};
    if (mod == 167772161) return {25, 17};
    if (mod == 469762049) return {26, 30};
    if (mod == 754974721) return {24, 362};
    if (mod == 880803841) return {23, 211};
    if (mod == 943718401) return {22, 663003469};
    if (mod == 998244353) return {23, 31};
    if (mod == 1004535809) return {21, 582313106};
    if (mod == 1012924417) return {21, 368093570};
    return {-1, -1};
  }
  static constexpr bool can_ntt() { return ntt_info().fi != -1; }
};

#ifdef FASTIO
template <int mod>
void rd(modint<mod> &x) {
  fastio::rd(x.val);
  x.val %= mod;
  // assert(0 <= x.val && x.val < mod);
}
template <int mod>
void wt(modint<mod> x) {
  fastio::wt(x.val);
}
#endif

using modint107 = modint<1000000007>;
using modint998 = modint<998244353>;
#line 9 "test/2_library_checker/data_structure/persistent_range_affine_range_sum.test.cpp"

using mint = modint998;

void solve() {
  LL(N, Q);
  VEC(mint, A, N);
  using AM = ActedMonoid_Sum_Affine<mint>;
  Dynamic_Lazy_SegTree<AM, true> seg(10000000, 0, N);
  using np = decltype(seg)::np;
  vc<np> root(Q + 1);
  root[0] = seg.new_node(A);

  FOR(q, 1, Q + 1) {
    INT(t);
    if (t == 0) {
      INT(k, L, R, b, c);
      ++k;
      root[q] = seg.apply(root[k], L, R, {mint(b), mint(c)});
    }
    if (t == 1) {
      INT(k, s, l, r);
      ++k, ++s;
      root[q] = seg.copy_interval(root[k], root[s], l, r, {mint(1), mint(0)});
    }
    if (t == 2) {
      INT(k, l, r);
      ++k;
      root[q] = root[k];
      mint ANS = seg.prod(root[q], l, r);
      print(ANS);
    }
  }
}

signed main() { solve(); }
Back to top page