This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub maspypy/library
#define PROBLEM "https://judge.yosupo.jp/problem/aplusb" #include "my_template.hpp" #include "random/base.hpp" #include "ds/segtree/segtree_2d.hpp" #include "alg/monoid/min.hpp" void test() { FOR(N, 100) { FOR(Q, 100) { vc<int> X(N), Y(N), val(N); FOR(i, N) X[i] = RNG(0, 5), Y[i] = RNG(0, 5), val[i] = RNG(0, 100); SegTree_2D<Monoid_Min<int>, int, true> seg(X, Y, val); FOR(Q) { int t = RNG(0, 3); if (N == 0) t = 2; if (t == 0) { int i = RNG(0, N); val[i] = RNG(0, 100); seg.set(i, val[i]); } if (t == 1) { int i = RNG(0, N); int x = RNG(0, 100); chmin(val[i], x); seg.multiply(i, val[i]); } if (t == 2) { int a = RNG(0, 5), b = RNG(0, 5), c = RNG(0, 5), d = RNG(0, 5); if (a > b) swap(a, b); if (c > d) swap(c, d); int ans = infty<int>; FOR(i, N) { if (a <= X[i] && X[i] < b && c <= Y[i] && Y[i] < d) chmin(ans, val[i]); } assert(ans == seg.prod(a, b, c, d)); } } } } } void solve() { int a, b; cin >> a >> b; cout << a + b << "\n"; } signed main() { test(); solve(); return 0; }
#line 1 "test/1_mytest/seg2d.test.cpp" #define PROBLEM "https://judge.yosupo.jp/problem/aplusb" #line 1 "my_template.hpp" #if defined(LOCAL) #include <my_template_compiled.hpp> #else // https://codeforces.com/blog/entry/96344 #pragma GCC optimize("Ofast,unroll-loops") // いまの CF だとこれ入れると動かない? // #pragma GCC target("avx2,popcnt") #include <bits/stdc++.h> using namespace std; using ll = long long; using u8 = uint8_t; using u16 = uint16_t; using u32 = uint32_t; using u64 = uint64_t; using i128 = __int128; using u128 = unsigned __int128; using f128 = __float128; template <class T> constexpr T infty = 0; template <> constexpr int infty<int> = 1'010'000'000; template <> constexpr ll infty<ll> = 2'020'000'000'000'000'000; template <> constexpr u32 infty<u32> = infty<int>; template <> constexpr u64 infty<u64> = infty<ll>; template <> constexpr i128 infty<i128> = i128(infty<ll>) * 2'000'000'000'000'000'000; template <> constexpr double infty<double> = infty<ll>; template <> constexpr long double infty<long double> = infty<ll>; using pi = pair<ll, ll>; using vi = vector<ll>; template <class T> using vc = vector<T>; template <class T> using vvc = vector<vc<T>>; template <class T> using vvvc = vector<vvc<T>>; template <class T> using vvvvc = vector<vvvc<T>>; template <class T> using vvvvvc = vector<vvvvc<T>>; template <class T> using pq = priority_queue<T>; template <class T> using pqg = priority_queue<T, vector<T>, greater<T>>; #define vv(type, name, h, ...) vector<vector<type>> name(h, vector<type>(__VA_ARGS__)) #define vvv(type, name, h, w, ...) vector<vector<vector<type>>> name(h, vector<vector<type>>(w, vector<type>(__VA_ARGS__))) #define vvvv(type, name, a, b, c, ...) \ vector<vector<vector<vector<type>>>> name(a, vector<vector<vector<type>>>(b, vector<vector<type>>(c, vector<type>(__VA_ARGS__)))) // https://trap.jp/post/1224/ #define FOR1(a) for (ll _ = 0; _ < ll(a); ++_) #define FOR2(i, a) for (ll i = 0; i < ll(a); ++i) #define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i) #define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c)) #define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i) #define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i) #define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i) #define overload4(a, b, c, d, e, ...) e #define overload3(a, b, c, d, ...) d #define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__) #define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__) #define all(x) x.begin(), x.end() #define len(x) ll(x.size()) #define elif else if #define eb emplace_back #define mp make_pair #define mt make_tuple #define fi first #define se second #define stoi stoll int popcnt(int x) { return __builtin_popcount(x); } int popcnt(u32 x) { return __builtin_popcount(x); } int popcnt(ll x) { return __builtin_popcountll(x); } int popcnt(u64 x) { return __builtin_popcountll(x); } int popcnt_sgn(int x) { return (__builtin_parity(unsigned(x)) & 1 ? -1 : 1); } int popcnt_sgn(u32 x) { return (__builtin_parity(x) & 1 ? -1 : 1); } int popcnt_sgn(ll x) { return (__builtin_parityll(x) & 1 ? -1 : 1); } int popcnt_sgn(u64 x) { return (__builtin_parityll(x) & 1 ? -1 : 1); } // (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2) int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); } int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); } int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); } int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); } // (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2) int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); } int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); } int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); } int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); } template <typename T> T kth_bit(int k) { return T(1) << k; } template <typename T> bool has_kth_bit(T x, int k) { return x >> k & 1; } template <typename UINT> struct all_bit { struct iter { UINT s; iter(UINT s) : s(s) {} int operator*() const { return lowbit(s); } iter &operator++() { s &= s - 1; return *this; } bool operator!=(const iter) const { return s != 0; } }; UINT s; all_bit(UINT s) : s(s) {} iter begin() const { return iter(s); } iter end() const { return iter(0); } }; template <typename UINT> struct all_subset { static_assert(is_unsigned<UINT>::value); struct iter { UINT s, t; bool ed; iter(UINT s) : s(s), t(s), ed(0) {} int operator*() const { return s ^ t; } iter &operator++() { (t == 0 ? ed = 1 : t = (t - 1) & s); return *this; } bool operator!=(const iter) const { return !ed; } }; UINT s; all_subset(UINT s) : s(s) {} iter begin() const { return iter(s); } iter end() const { return iter(0); } }; template <typename T> T floor(T a, T b) { return a / b - (a % b && (a ^ b) < 0); } template <typename T> T ceil(T x, T y) { return floor(x + y - 1, y); } template <typename T> T bmod(T x, T y) { return x - y * floor(x, y); } template <typename T> pair<T, T> divmod(T x, T y) { T q = floor(x, y); return {q, x - q * y}; } template <typename T, typename U> T SUM(const vector<U> &A) { T sm = 0; for (auto &&a: A) sm += a; return sm; } #define MIN(v) *min_element(all(v)) #define MAX(v) *max_element(all(v)) #define LB(c, x) distance((c).begin(), lower_bound(all(c), (x))) #define UB(c, x) distance((c).begin(), upper_bound(all(c), (x))) #define UNIQUE(x) sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit() template <typename T> T POP(deque<T> &que) { T a = que.front(); que.pop_front(); return a; } template <typename T> T POP(pq<T> &que) { T a = que.top(); que.pop(); return a; } template <typename T> T POP(pqg<T> &que) { T a = que.top(); que.pop(); return a; } template <typename T> T POP(vc<T> &que) { T a = que.back(); que.pop_back(); return a; } template <typename F> ll binary_search(F check, ll ok, ll ng, bool check_ok = true) { if (check_ok) assert(check(ok)); while (abs(ok - ng) > 1) { auto x = (ng + ok) / 2; (check(x) ? ok : ng) = x; } return ok; } template <typename F> double binary_search_real(F check, double ok, double ng, int iter = 100) { FOR(iter) { double x = (ok + ng) / 2; (check(x) ? ok : ng) = x; } return (ok + ng) / 2; } template <class T, class S> inline bool chmax(T &a, const S &b) { return (a < b ? a = b, 1 : 0); } template <class T, class S> inline bool chmin(T &a, const S &b) { return (a > b ? a = b, 1 : 0); } // ? は -1 vc<int> s_to_vi(const string &S, char first_char) { vc<int> A(S.size()); FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); } return A; } template <typename T, typename U> vector<T> cumsum(vector<U> &A, int off = 1) { int N = A.size(); vector<T> B(N + 1); FOR(i, N) { B[i + 1] = B[i] + A[i]; } if (off == 0) B.erase(B.begin()); return B; } // stable sort template <typename T> vector<int> argsort(const vector<T> &A) { vector<int> ids(len(A)); iota(all(ids), 0); sort(all(ids), [&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); }); return ids; } // A[I[0]], A[I[1]], ... template <typename T> vc<T> rearrange(const vc<T> &A, const vc<int> &I) { vc<T> B(len(I)); FOR(i, len(I)) B[i] = A[I[i]]; return B; } template <typename T, typename... Vectors> void concat(vc<T> &first, const Vectors &... others) { vc<T> &res = first; (res.insert(res.end(), others.begin(), others.end()), ...); } #endif #line 3 "test/1_mytest/seg2d.test.cpp" #line 2 "random/base.hpp" u64 RNG_64() { static u64 x_ = u64(chrono::duration_cast<chrono::nanoseconds>(chrono::high_resolution_clock::now().time_since_epoch()).count()) * 10150724397891781847ULL; x_ ^= x_ << 7; return x_ ^= x_ >> 9; } u64 RNG(u64 lim) { return RNG_64() % lim; } ll RNG(ll l, ll r) { return l + RNG_64() % (r - l); } #line 1 "ds/segtree/segtree_2d.hpp" // 点の重複があっても別の点として set などがされる template <typename Monoid, typename XY, bool SMALL_X = false> struct SegTree_2D { using MX = Monoid; using S = typename MX::value_type; static_assert(MX::commute); int N; // X to idx vc<XY> keyX; int minX; // top node の点列 vc<XY> all_Y; vc<int> pos; // segtree data int NX, log, size; vc<int> indptr; vc<S> dat; // fractional cascading vc<int> to_left; SegTree_2D(vc<XY>& X, vc<XY>& Y) : SegTree_2D(len(X), [&](int i) -> tuple<XY, XY, S> { return {X[i], Y[i], MX::unit()}; }) {} SegTree_2D(vc<XY>& X, vc<XY>& Y, vc<S>& vals) : SegTree_2D(len(X), [&](int i) -> tuple<XY, XY, S> { return {X[i], Y[i], vals[i]}; }) {} // f(i) = (x,y,val) template <typename F> SegTree_2D(int N, F f) { vc<XY> X(N), Y(N); vc<S> wt(N); FOR(i, N) { auto [a, b, c] = f(i); X[i] = a, Y[i] = b, wt[i] = c; } if (!SMALL_X) { keyX = X; UNIQUE(keyX); NX = len(keyX); } else { minX = (X.empty() ? 0 : MIN(X)); NX = (X.empty() ? 1 : MAX(X) - minX + 1); } log = 0; while ((1 << log) < NX) ++log; size = (1 << log); vc<int> IX(N); FOR(i, N) IX[i] = xtoi(X[i]); indptr.assign(2 * size, 0); for (auto i: IX) { i += size; while (i) indptr[i]++, i /= 2; } indptr = cumsum<int>(indptr); dat.assign(2 * indptr.back(), MX::unit()); to_left.assign(indptr[size], 0); vc<int> ptr = indptr; vc<int> I = argsort(Y); pos.resize(N); FOR(i, N) pos[I[i]] = i; for (auto raw_idx: I) { int i = IX[raw_idx] + size; int j = -1; while (i) { int p = ptr[i]; ptr[i]++; dat[indptr[i + 1] + p] = wt[raw_idx]; if (j != -1) { to_left[p] = (j % 2 == 0); } j = i, i /= 2; } } to_left = cumsum<int>(to_left); FOR(i, 2 * size) { int off = 2 * indptr[i], n = indptr[i + 1] - indptr[i]; FOR_R(j, 1, n) { dat[off + j] = MX::op(dat[off + 2 * j + 0], dat[off + 2 * j + 1]); } } all_Y = Y; sort(all(all_Y)); } // 最初に与えた点群の index void multiply(int raw_idx, S val) { int i = 1, p = pos[raw_idx]; while (1) { multiply_i(i, p - indptr[i], val); if (i >= size) break; int lc = to_left[p] - to_left[indptr[i]]; int rc = (p - indptr[i]) - lc; if (to_left[p + 1] - to_left[p]) { p = indptr[2 * i + 0] + lc; i = 2 * i + 0; } else { p = indptr[2 * i + 1] + rc; i = 2 * i + 1; } } } // 最初に与えた点群の index void set(int raw_idx, S val) { int i = 1, p = pos[raw_idx]; while (1) { set_i(i, p - indptr[i], val); if (i >= size) break; int lc = to_left[p] - to_left[indptr[i]]; int rc = (p - indptr[i]) - lc; if (to_left[p + 1] - to_left[p]) { p = indptr[2 * i + 0] + lc; i = 2 * i + 0; } else { p = indptr[2 * i + 1] + rc; i = 2 * i + 1; } } } S prod(XY lx, XY rx, XY ly, XY ry) { assert(lx <= rx && ly <= ry); int L = xtoi(lx), R = xtoi(rx); S res = MX::unit(); auto dfs = [&](auto& dfs, int i, int l, int r, int a, int b) -> void { if (a == b || R <= l || r <= L) return; if (L <= l && r <= R) { res = MX::op(res, prod_i(i, a, b)); return; } int la = to_left[indptr[i] + a] - to_left[indptr[i]]; int ra = a - la; int lb = to_left[indptr[i] + b] - to_left[indptr[i]]; int rb = b - lb; int m = (l + r) / 2; dfs(dfs, 2 * i + 0, l, m, la, lb); dfs(dfs, 2 * i + 1, m, r, ra, rb); }; dfs(dfs, 1, 0, size, LB(all_Y, ly), LB(all_Y, ry)); return res; } // 矩形内の全点を数える, NlogN int count(XY lx, XY rx, XY ly, XY ry) { assert(lx <= rx && ly <= ry); int L = xtoi(lx), R = xtoi(rx); int res = 0; auto dfs = [&](auto& dfs, int i, int l, int r, int a, int b) -> void { if (a == b || R <= l || r <= L) return; if (L <= l && r <= R) { res += b - a; return; } int la = to_left[indptr[i] + a] - to_left[indptr[i]]; int ra = a - la; int lb = to_left[indptr[i] + b] - to_left[indptr[i]]; int rb = b - lb; int m = (l + r) / 2; dfs(dfs, 2 * i + 0, l, m, la, lb); dfs(dfs, 2 * i + 1, m, r, ra, rb); }; dfs(dfs, 1, 0, size, LB(all_Y, ly), LB(all_Y, ry)); return res; } private: inline int xtoi(XY x) { if constexpr (SMALL_X) return clamp<XY>(x - minX, 0, NX); return LB(keyX, x); } S prod_i(int i, int a, int b) { int LID = indptr[i], n = indptr[i + 1] - indptr[i]; int off = 2 * LID; int L = n + a, R = n + b; S val = MX::unit(); while (L < R) { if (L & 1) val = MX::op(val, dat[off + (L++)]); if (R & 1) val = MX::op(dat[off + (--R)], val); L >>= 1, R >>= 1; } return val; } void multiply_i(int i, int j, S val) { int LID = indptr[i], n = indptr[i + 1] - indptr[i]; int off = 2 * LID; j += n; while (j) { dat[off + j] = MX::op(dat[off + j], val); j >>= 1; } } void set_i(int i, int j, S val) { int LID = indptr[i], n = indptr[i + 1] - indptr[i]; int off = 2 * LID; j += n; dat[off + j] = val; while (j > 1) { j /= 2; dat[off + j] = MX::op(dat[off + 2 * j + 0], dat[off + 2 * j + 1]); } } }; #line 2 "alg/monoid/min.hpp" template <typename E> struct Monoid_Min { using X = E; using value_type = X; static constexpr X op(const X &x, const X &y) noexcept { return min(x, y); } static constexpr X unit() { return infty<E>; } static constexpr bool commute = true; }; #line 7 "test/1_mytest/seg2d.test.cpp" void test() { FOR(N, 100) { FOR(Q, 100) { vc<int> X(N), Y(N), val(N); FOR(i, N) X[i] = RNG(0, 5), Y[i] = RNG(0, 5), val[i] = RNG(0, 100); SegTree_2D<Monoid_Min<int>, int, true> seg(X, Y, val); FOR(Q) { int t = RNG(0, 3); if (N == 0) t = 2; if (t == 0) { int i = RNG(0, N); val[i] = RNG(0, 100); seg.set(i, val[i]); } if (t == 1) { int i = RNG(0, N); int x = RNG(0, 100); chmin(val[i], x); seg.multiply(i, val[i]); } if (t == 2) { int a = RNG(0, 5), b = RNG(0, 5), c = RNG(0, 5), d = RNG(0, 5); if (a > b) swap(a, b); if (c > d) swap(c, d); int ans = infty<int>; FOR(i, N) { if (a <= X[i] && X[i] < b && c <= Y[i] && Y[i] < d) chmin(ans, val[i]); } assert(ans == seg.prod(a, b, c, d)); } } } } } void solve() { int a, b; cin >> a >> b; cout << a + b << "\n"; } signed main() { test(); solve(); return 0; }