This documentation is automatically generated by online-judge-tools/verification-helper
#include "ds/segtree/segtree_2d.hpp"
// 点の重複 OK
template <typename Monoid, typename XY, bool SMALL_X = false>
struct SegTree_2D {
using MX = Monoid;
using S = typename MX::value_type;
static_assert(MX::commute);
int N;
// X to idx
vc<XY> keyX;
int minX;
// top node の点列
vc<XY> all_Y;
vc<int> pos;
// segtree data
int NX, log, size;
vc<int> indptr;
vc<S> dat;
// fractional cascading
vc<int> to_left;
SegTree_2D(vc<XY>& X, vc<XY>& Y)
: SegTree_2D(len(X), [&](int i) -> tuple<XY, XY, S> {
return {X[i], Y[i], MX::unit()};
}) {}
SegTree_2D(vc<XY>& X, vc<XY>& Y, vc<S>& vals)
: SegTree_2D(len(X), [&](int i) -> tuple<XY, XY, S> {
return {X[i], Y[i], vals[i]};
}) {}
// f(i) = (x,y,val)
template <typename F>
SegTree_2D(int N, F f) {
vc<XY> X(N), Y(N);
vc<S> wt(N);
FOR(i, N) {
auto [a, b, c] = f(i);
X[i] = a, Y[i] = b, wt[i] = c;
}
if (!SMALL_X) {
keyX = X;
UNIQUE(keyX);
NX = len(keyX);
} else {
minX = (X.empty() ? 0 : MIN(X));
NX = (X.empty() ? 1 : MAX(X) - minX + 1);
}
log = 0;
while ((1 << log) < NX) ++log;
size = (1 << log);
vc<int> IX(N);
FOR(i, N) IX[i] = xtoi(X[i]);
indptr.assign(2 * size, 0);
for (auto i: IX) {
i += size;
while (i) indptr[i]++, i /= 2;
}
indptr = cumsum<int>(indptr);
dat.assign(2 * indptr.back(), MX::unit());
to_left.assign(indptr[size], 0);
vc<int> ptr = indptr;
vc<int> I = argsort(Y);
pos.resize(N);
FOR(i, N) pos[I[i]] = i;
for (auto raw_idx: I) {
int i = IX[raw_idx] + size;
int j = -1;
while (i) {
int p = ptr[i];
ptr[i]++;
dat[indptr[i + 1] + p] = wt[raw_idx];
if (j != -1) { to_left[p] = (j % 2 == 0); }
j = i, i /= 2;
}
}
to_left = cumsum<int>(to_left);
FOR(i, 2 * size) {
int off = 2 * indptr[i], n = indptr[i + 1] - indptr[i];
FOR_R(j, 1, n) {
dat[off + j] = MX::op(dat[off + 2 * j + 0], dat[off + 2 * j + 1]);
}
}
all_Y = Y;
sort(all(all_Y));
}
// 最初に与えた点群の index
void multiply(int raw_idx, S val) {
int i = 1, p = pos[raw_idx];
while (1) {
multiply_i(i, p - indptr[i], val);
if (i >= size) break;
int lc = to_left[p] - to_left[indptr[i]];
int rc = (p - indptr[i]) - lc;
if (to_left[p + 1] - to_left[p]) {
p = indptr[2 * i + 0] + lc;
i = 2 * i + 0;
} else {
p = indptr[2 * i + 1] + rc;
i = 2 * i + 1;
}
}
}
// 最初に与えた点群の index
void set(int raw_idx, S val) {
int i = 1, p = pos[raw_idx];
while (1) {
set_i(i, p - indptr[i], val);
if (i >= size) break;
int lc = to_left[p] - to_left[indptr[i]];
int rc = (p - indptr[i]) - lc;
if (to_left[p + 1] - to_left[p]) {
p = indptr[2 * i + 0] + lc;
i = 2 * i + 0;
} else {
p = indptr[2 * i + 1] + rc;
i = 2 * i + 1;
}
}
}
S prod(XY lx, XY rx, XY ly, XY ry) {
int L = xtoi(lx), R = xtoi(rx);
S res = MX::unit();
auto dfs = [&](auto& dfs, int i, int l, int r, int a, int b) -> void {
if (a == b || R <= l || r <= L) return;
if (L <= l && r <= R) {
res = MX::op(res, prod_i(i, a, b));
return;
}
int la = to_left[indptr[i] + a] - to_left[indptr[i]];
int ra = a - la;
int lb = to_left[indptr[i] + b] - to_left[indptr[i]];
int rb = b - lb;
int m = (l + r) / 2;
dfs(dfs, 2 * i + 0, l, m, la, lb);
dfs(dfs, 2 * i + 1, m, r, ra, rb);
};
dfs(dfs, 1, 0, size, LB(all_Y, ly), LB(all_Y, ry));
return res;
}
// 矩形内の全点を数える, NlogN
int count(XY lx, XY rx, XY ly, XY ry) {
int L = xtoi(lx), R = xtoi(rx);
int res = 0;
auto dfs = [&](auto& dfs, int i, int l, int r, int a, int b) -> void {
if (a == b || R <= l || r <= L) return;
if (L <= l && r <= R) {
res += b - a;
return;
}
int la = to_left[indptr[i] + a] - to_left[indptr[i]];
int ra = a - la;
int lb = to_left[indptr[i] + b] - to_left[indptr[i]];
int rb = b - lb;
int m = (l + r) / 2;
dfs(dfs, 2 * i + 0, l, m, la, lb);
dfs(dfs, 2 * i + 1, m, r, ra, rb);
};
dfs(dfs, 1, 0, size, LB(all_Y, ly), LB(all_Y, ry));
return res;
}
private:
inline int xtoi(XY x) {
if constexpr (SMALL_X) return clamp<XY>(x - minX, 0, NX);
return LB(keyX, x);
}
S prod_i(int i, int a, int b) {
int LID = indptr[i], n = indptr[i + 1] - indptr[i];
int off = 2 * LID;
int L = n + a, R = n + b;
S val = MX::unit();
while (L < R) {
if (L & 1) val = MX::op(val, dat[off + (L++)]);
if (R & 1) val = MX::op(dat[off + (--R)], val);
L >>= 1, R >>= 1;
}
return val;
}
void multiply_i(int i, int j, S val) {
int LID = indptr[i], n = indptr[i + 1] - indptr[i];
int off = 2 * LID;
j += n;
while (j) {
dat[off + j] = MX::op(dat[off + j], val);
j >>= 1;
}
}
void set_i(int i, int j, S val) {
int LID = indptr[i], n = indptr[i + 1] - indptr[i];
int off = 2 * LID;
j += n;
dat[off + j] = val;
while (j > 1) {
j /= 2;
dat[off + j] = MX::op(dat[off + 2 * j + 0], dat[off + 2 * j + 1]);
}
}
};
#line 1 "ds/segtree/segtree_2d.hpp"
// 点の重複 OK
template <typename Monoid, typename XY, bool SMALL_X = false>
struct SegTree_2D {
using MX = Monoid;
using S = typename MX::value_type;
static_assert(MX::commute);
int N;
// X to idx
vc<XY> keyX;
int minX;
// top node の点列
vc<XY> all_Y;
vc<int> pos;
// segtree data
int NX, log, size;
vc<int> indptr;
vc<S> dat;
// fractional cascading
vc<int> to_left;
SegTree_2D(vc<XY>& X, vc<XY>& Y)
: SegTree_2D(len(X), [&](int i) -> tuple<XY, XY, S> {
return {X[i], Y[i], MX::unit()};
}) {}
SegTree_2D(vc<XY>& X, vc<XY>& Y, vc<S>& vals)
: SegTree_2D(len(X), [&](int i) -> tuple<XY, XY, S> {
return {X[i], Y[i], vals[i]};
}) {}
// f(i) = (x,y,val)
template <typename F>
SegTree_2D(int N, F f) {
vc<XY> X(N), Y(N);
vc<S> wt(N);
FOR(i, N) {
auto [a, b, c] = f(i);
X[i] = a, Y[i] = b, wt[i] = c;
}
if (!SMALL_X) {
keyX = X;
UNIQUE(keyX);
NX = len(keyX);
} else {
minX = (X.empty() ? 0 : MIN(X));
NX = (X.empty() ? 1 : MAX(X) - minX + 1);
}
log = 0;
while ((1 << log) < NX) ++log;
size = (1 << log);
vc<int> IX(N);
FOR(i, N) IX[i] = xtoi(X[i]);
indptr.assign(2 * size, 0);
for (auto i: IX) {
i += size;
while (i) indptr[i]++, i /= 2;
}
indptr = cumsum<int>(indptr);
dat.assign(2 * indptr.back(), MX::unit());
to_left.assign(indptr[size], 0);
vc<int> ptr = indptr;
vc<int> I = argsort(Y);
pos.resize(N);
FOR(i, N) pos[I[i]] = i;
for (auto raw_idx: I) {
int i = IX[raw_idx] + size;
int j = -1;
while (i) {
int p = ptr[i];
ptr[i]++;
dat[indptr[i + 1] + p] = wt[raw_idx];
if (j != -1) { to_left[p] = (j % 2 == 0); }
j = i, i /= 2;
}
}
to_left = cumsum<int>(to_left);
FOR(i, 2 * size) {
int off = 2 * indptr[i], n = indptr[i + 1] - indptr[i];
FOR_R(j, 1, n) {
dat[off + j] = MX::op(dat[off + 2 * j + 0], dat[off + 2 * j + 1]);
}
}
all_Y = Y;
sort(all(all_Y));
}
// 最初に与えた点群の index
void multiply(int raw_idx, S val) {
int i = 1, p = pos[raw_idx];
while (1) {
multiply_i(i, p - indptr[i], val);
if (i >= size) break;
int lc = to_left[p] - to_left[indptr[i]];
int rc = (p - indptr[i]) - lc;
if (to_left[p + 1] - to_left[p]) {
p = indptr[2 * i + 0] + lc;
i = 2 * i + 0;
} else {
p = indptr[2 * i + 1] + rc;
i = 2 * i + 1;
}
}
}
// 最初に与えた点群の index
void set(int raw_idx, S val) {
int i = 1, p = pos[raw_idx];
while (1) {
set_i(i, p - indptr[i], val);
if (i >= size) break;
int lc = to_left[p] - to_left[indptr[i]];
int rc = (p - indptr[i]) - lc;
if (to_left[p + 1] - to_left[p]) {
p = indptr[2 * i + 0] + lc;
i = 2 * i + 0;
} else {
p = indptr[2 * i + 1] + rc;
i = 2 * i + 1;
}
}
}
S prod(XY lx, XY rx, XY ly, XY ry) {
int L = xtoi(lx), R = xtoi(rx);
S res = MX::unit();
auto dfs = [&](auto& dfs, int i, int l, int r, int a, int b) -> void {
if (a == b || R <= l || r <= L) return;
if (L <= l && r <= R) {
res = MX::op(res, prod_i(i, a, b));
return;
}
int la = to_left[indptr[i] + a] - to_left[indptr[i]];
int ra = a - la;
int lb = to_left[indptr[i] + b] - to_left[indptr[i]];
int rb = b - lb;
int m = (l + r) / 2;
dfs(dfs, 2 * i + 0, l, m, la, lb);
dfs(dfs, 2 * i + 1, m, r, ra, rb);
};
dfs(dfs, 1, 0, size, LB(all_Y, ly), LB(all_Y, ry));
return res;
}
// 矩形内の全点を数える, NlogN
int count(XY lx, XY rx, XY ly, XY ry) {
int L = xtoi(lx), R = xtoi(rx);
int res = 0;
auto dfs = [&](auto& dfs, int i, int l, int r, int a, int b) -> void {
if (a == b || R <= l || r <= L) return;
if (L <= l && r <= R) {
res += b - a;
return;
}
int la = to_left[indptr[i] + a] - to_left[indptr[i]];
int ra = a - la;
int lb = to_left[indptr[i] + b] - to_left[indptr[i]];
int rb = b - lb;
int m = (l + r) / 2;
dfs(dfs, 2 * i + 0, l, m, la, lb);
dfs(dfs, 2 * i + 1, m, r, ra, rb);
};
dfs(dfs, 1, 0, size, LB(all_Y, ly), LB(all_Y, ry));
return res;
}
private:
inline int xtoi(XY x) {
if constexpr (SMALL_X) return clamp<XY>(x - minX, 0, NX);
return LB(keyX, x);
}
S prod_i(int i, int a, int b) {
int LID = indptr[i], n = indptr[i + 1] - indptr[i];
int off = 2 * LID;
int L = n + a, R = n + b;
S val = MX::unit();
while (L < R) {
if (L & 1) val = MX::op(val, dat[off + (L++)]);
if (R & 1) val = MX::op(dat[off + (--R)], val);
L >>= 1, R >>= 1;
}
return val;
}
void multiply_i(int i, int j, S val) {
int LID = indptr[i], n = indptr[i + 1] - indptr[i];
int off = 2 * LID;
j += n;
while (j) {
dat[off + j] = MX::op(dat[off + j], val);
j >>= 1;
}
}
void set_i(int i, int j, S val) {
int LID = indptr[i], n = indptr[i + 1] - indptr[i];
int off = 2 * LID;
j += n;
dat[off + j] = val;
while (j > 1) {
j /= 2;
dat[off + j] = MX::op(dat[off + 2 * j + 0], dat[off + 2 * j + 1]);
}
}
};