This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub maspypy/library
#define PROBLEM "https://judge.yosupo.jp/problem/aplusb" #include "my_template.hpp" #include "alg/acted_monoid/min_assign.hpp" #include "ds/randomized_bst/rbst_acted_monoid.hpp" #include "random/base.hpp" void test() { using AM = ActedMonoid_Min_Assign<int, -1>; using MonoX = typename AM::Monoid_X; RBST_ActedMonoid<AM, false> X(100); FOR(1000) { X.reset(); int N = RNG(1, 20); int Q = RNG(1, 1000); vc<int> A(N); FOR(i, N) A[i] = RNG(1, 100); auto root = X.new_node(A); FOR(Q) { int t = RNG(0, 7); if (t == 0) { int i = RNG(0, N); assert(A[i] == X.get(root, i)); } if (t == 1) { int i = RNG(0, N); int x = RNG(1, 100); root = X.set(root, i, x); A[i] = x; } if (t == 2) { int i = RNG(0, N); int x = RNG(1, 100); root = X.multiply(root, i, x); A[i] = MonoX::op(A[i], x); } if (t == 3) { int L = RNG(0, N); int R = RNG(0, N); if (L > R) swap(L, R); ++R; vc<int> B = {A.begin() + L, A.begin() + R}; assert(X.prod(root, L, R) == MIN(B)); } if (t == 4) { int L = RNG(0, N); int R = RNG(0, N); if (L > R) swap(L, R); ++R; root = X.reverse(root, L, R); reverse(A.begin() + L, A.begin() + R); } if (t == 5) { int L = RNG(0, N); int R = RNG(0, N); if (L > R) swap(L, R); ++R; int x = RNG(1, 100); FOR(i, L, R) A[i] = x; root = X.apply(root, L, R, x); } if (t == 6) { vc<int> B = X.get_all(root); assert(A == B); } } } } void solve() { int a, b; cin >> a >> b; cout << a + b << "\n"; } signed main() { test(); solve(); return 0; }
#line 1 "test/1_mytest/rbst_am.test.cpp" #define PROBLEM "https://judge.yosupo.jp/problem/aplusb" #line 1 "my_template.hpp" #if defined(LOCAL) #include <my_template_compiled.hpp> #else // https://codeforces.com/blog/entry/96344 #pragma GCC optimize("Ofast,unroll-loops") // いまの CF だとこれ入れると動かない? // #pragma GCC target("avx2,popcnt") #include <bits/stdc++.h> using namespace std; using ll = long long; using u8 = uint8_t; using u16 = uint16_t; using u32 = uint32_t; using u64 = uint64_t; using i128 = __int128; using u128 = unsigned __int128; using f128 = __float128; template <class T> constexpr T infty = 0; template <> constexpr int infty<int> = 1'010'000'000; template <> constexpr ll infty<ll> = 2'020'000'000'000'000'000; template <> constexpr u32 infty<u32> = infty<int>; template <> constexpr u64 infty<u64> = infty<ll>; template <> constexpr i128 infty<i128> = i128(infty<ll>) * 2'000'000'000'000'000'000; template <> constexpr double infty<double> = infty<ll>; template <> constexpr long double infty<long double> = infty<ll>; using pi = pair<ll, ll>; using vi = vector<ll>; template <class T> using vc = vector<T>; template <class T> using vvc = vector<vc<T>>; template <class T> using vvvc = vector<vvc<T>>; template <class T> using vvvvc = vector<vvvc<T>>; template <class T> using vvvvvc = vector<vvvvc<T>>; template <class T> using pq = priority_queue<T>; template <class T> using pqg = priority_queue<T, vector<T>, greater<T>>; #define vv(type, name, h, ...) vector<vector<type>> name(h, vector<type>(__VA_ARGS__)) #define vvv(type, name, h, w, ...) vector<vector<vector<type>>> name(h, vector<vector<type>>(w, vector<type>(__VA_ARGS__))) #define vvvv(type, name, a, b, c, ...) \ vector<vector<vector<vector<type>>>> name(a, vector<vector<vector<type>>>(b, vector<vector<type>>(c, vector<type>(__VA_ARGS__)))) // https://trap.jp/post/1224/ #define FOR1(a) for (ll _ = 0; _ < ll(a); ++_) #define FOR2(i, a) for (ll i = 0; i < ll(a); ++i) #define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i) #define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c)) #define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i) #define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i) #define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i) #define overload4(a, b, c, d, e, ...) e #define overload3(a, b, c, d, ...) d #define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__) #define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__) #define FOR_subset(t, s) for (ll t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s))) #define all(x) x.begin(), x.end() #define len(x) ll(x.size()) #define elif else if #define eb emplace_back #define mp make_pair #define mt make_tuple #define fi first #define se second #define stoi stoll int popcnt(int x) { return __builtin_popcount(x); } int popcnt(u32 x) { return __builtin_popcount(x); } int popcnt(ll x) { return __builtin_popcountll(x); } int popcnt(u64 x) { return __builtin_popcountll(x); } int popcnt_mod_2(int x) { return __builtin_parity(x); } int popcnt_mod_2(u32 x) { return __builtin_parity(x); } int popcnt_mod_2(ll x) { return __builtin_parityll(x); } int popcnt_mod_2(u64 x) { return __builtin_parityll(x); } // (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2) int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); } int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); } int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); } int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); } // (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2) int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); } int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); } int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); } int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); } template <typename T> T floor(T a, T b) { return a / b - (a % b && (a ^ b) < 0); } template <typename T> T ceil(T x, T y) { return floor(x + y - 1, y); } template <typename T> T bmod(T x, T y) { return x - y * floor(x, y); } template <typename T> pair<T, T> divmod(T x, T y) { T q = floor(x, y); return {q, x - q * y}; } template <typename T, typename U> T SUM(const vector<U> &A) { T sm = 0; for (auto &&a: A) sm += a; return sm; } #define MIN(v) *min_element(all(v)) #define MAX(v) *max_element(all(v)) #define LB(c, x) distance((c).begin(), lower_bound(all(c), (x))) #define UB(c, x) distance((c).begin(), upper_bound(all(c), (x))) #define UNIQUE(x) sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit() template <typename T> T POP(deque<T> &que) { T a = que.front(); que.pop_front(); return a; } template <typename T> T POP(pq<T> &que) { T a = que.top(); que.pop(); return a; } template <typename T> T POP(pqg<T> &que) { T a = que.top(); que.pop(); return a; } template <typename T> T POP(vc<T> &que) { T a = que.back(); que.pop_back(); return a; } template <typename F> ll binary_search(F check, ll ok, ll ng, bool check_ok = true) { if (check_ok) assert(check(ok)); while (abs(ok - ng) > 1) { auto x = (ng + ok) / 2; (check(x) ? ok : ng) = x; } return ok; } template <typename F> double binary_search_real(F check, double ok, double ng, int iter = 100) { FOR(iter) { double x = (ok + ng) / 2; (check(x) ? ok : ng) = x; } return (ok + ng) / 2; } template <class T, class S> inline bool chmax(T &a, const S &b) { return (a < b ? a = b, 1 : 0); } template <class T, class S> inline bool chmin(T &a, const S &b) { return (a > b ? a = b, 1 : 0); } // ? は -1 vc<int> s_to_vi(const string &S, char first_char) { vc<int> A(S.size()); FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); } return A; } template <typename T, typename U> vector<T> cumsum(vector<U> &A, int off = 1) { int N = A.size(); vector<T> B(N + 1); FOR(i, N) { B[i + 1] = B[i] + A[i]; } if (off == 0) B.erase(B.begin()); return B; } // stable sort template <typename T> vector<int> argsort(const vector<T> &A) { vector<int> ids(len(A)); iota(all(ids), 0); sort(all(ids), [&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); }); return ids; } // A[I[0]], A[I[1]], ... template <typename T> vc<T> rearrange(const vc<T> &A, const vc<int> &I) { vc<T> B(len(I)); FOR(i, len(I)) B[i] = A[I[i]]; return B; } template <typename T, typename... Vectors> void concat(vc<T> &first, const Vectors &... others) { vc<T> &res = first; (res.insert(res.end(), others.begin(), others.end()), ...); } #endif #line 2 "alg/monoid/min.hpp" template <typename E> struct Monoid_Min { using X = E; using value_type = X; static constexpr X op(const X &x, const X &y) noexcept { return min(x, y); } static constexpr X unit() { return infty<E>; } static constexpr bool commute = true; }; #line 2 "alg/monoid/assign.hpp" template <typename X, int none_val> struct Monoid_Assign { using value_type = X; static X op(X x, X y) { return (y == X(none_val) ? x : y); } static constexpr X unit() { return X(none_val); } static constexpr bool commute = false; }; #line 3 "alg/acted_monoid/min_assign.hpp" template <typename E, E none_val> struct ActedMonoid_Min_Assign { using Monoid_X = Monoid_Min<E>; using Monoid_A = Monoid_Assign<E, none_val>; using X = typename Monoid_X::value_type; using A = typename Monoid_A::value_type; static constexpr X act(const X &x, const A &a, const ll &size) { return (a == none_val ? x : a); } }; #line 1 "ds/randomized_bst/rbst_acted_monoid.hpp" template <typename ActedMonoid, bool PERSISTENT> struct RBST_ActedMonoid { using Monoid_X = typename ActedMonoid::Monoid_X; using Monoid_A = typename ActedMonoid::Monoid_A; using X = typename Monoid_X::value_type; using A = typename Monoid_A::value_type; struct Node { Node *l, *r; X x, prod; // lazy, rev 反映済 A lazy; u32 size; bool rev; }; Node *pool; const int NODES; int pid; using np = Node *; RBST_ActedMonoid(int NODES) : NODES(NODES), pid(0) { pool = new Node[NODES]; } ~RBST_ActedMonoid() { delete[] pool; } void reset() { pid = 0; } np new_node(const X &x) { pool[pid].l = pool[pid].r = nullptr; pool[pid].x = x; pool[pid].prod = x; pool[pid].lazy = Monoid_A::unit(); pool[pid].size = 1; pool[pid].rev = 0; return &(pool[pid++]); } np new_node(const vc<X> &dat) { auto dfs = [&](auto &dfs, u32 l, u32 r) -> np { if (l == r) return nullptr; if (r == l + 1) return new_node(dat[l]); u32 m = (l + r) / 2; np l_root = dfs(dfs, l, m); np r_root = dfs(dfs, m + 1, r); np root = new_node(dat[m]); root->l = l_root, root->r = r_root; update(root); return root; }; return dfs(dfs, 0, len(dat)); } np copy_node(np &n) { if (!n || !PERSISTENT) return n; pool[pid].l = n->l, pool[pid].r = n->r; pool[pid].x = n->x; pool[pid].prod = n->prod; pool[pid].lazy = n->lazy; pool[pid].size = n->size; pool[pid].rev = n->rev; return &(pool[pid++]); } np merge(np l_root, np r_root) { return merge_rec(l_root, r_root); } np merge3(np a, np b, np c) { return merge(merge(a, b), c); } np merge4(np a, np b, np c, np d) { return merge(merge(merge(a, b), c), d); } pair<np, np> split(np root, u32 k) { if (!root) { assert(k == 0); return {nullptr, nullptr}; } assert(0 <= k && k <= root->size); return split_rec(root, k); } tuple<np, np, np> split3(np root, u32 l, u32 r) { np nm, nr; tie(root, nr) = split(root, r); tie(root, nm) = split(root, l); return {root, nm, nr}; } tuple<np, np, np, np> split4(np root, u32 i, u32 j, u32 k) { np d; tie(root, d) = split(root, k); auto [a, b, c] = split3(root, i, j); return {a, b, c, d}; } X prod(np root, u32 l, u32 r) { if (l == r) return Monoid_X::unit(); return prod_rec(root, l, r, false); } X prod(np root) { return (root ? root->prod : Monoid_X::unit()); } np reverse(np root, u32 l, u32 r) { assert(Monoid_X::commute); assert(0 <= l && l <= r && r <= root->size); if (r - l <= 1) return root; auto [nl, nm, nr] = split3(root, l, r); nm->rev ^= 1; swap(nm->l, nm->r); return merge3(nl, nm, nr); } np apply(np root, u32 l, u32 r, const A a) { assert(0 <= l && l <= r && r <= root->size); return apply_rec(root, l, r, a); } np apply(np root, const A a) { if (!root) return root; return apply_rec(root, 0, root->size, a); } np set(np root, u32 k, const X &x) { return set_rec(root, k, x); } np multiply(np root, u32 k, const X &x) { return multiply_rec(root, k, x); } X get(np root, u32 k) { return get_rec(root, k, false, Monoid_A::unit()); } vc<X> get_all(np root) { vc<X> res; auto dfs = [&](auto &dfs, np root, bool rev, A lazy) -> void { if (!root) return; X me = ActedMonoid::act(root->x, lazy, 1); lazy = Monoid_A::op(root->lazy, lazy); dfs(dfs, (rev ? root->r : root->l), rev ^ root->rev, lazy); res.eb(me); dfs(dfs, (rev ? root->l : root->r), rev ^ root->rev, lazy); }; dfs(dfs, root, 0, Monoid_A::unit()); return res; } template <typename F> pair<np, np> split_max_right(np root, const F check) { assert(check(Monoid_X::unit())); X x = Monoid_X::unit(); return split_max_right_rec(root, check, x); } private: inline u32 xor128() { static u32 x = 123456789; static u32 y = 362436069; static u32 z = 521288629; static u32 w = 88675123; u32 t = x ^ (x << 11); x = y; y = z; z = w; return w = (w ^ (w >> 19)) ^ (t ^ (t >> 8)); } void prop(np c) { // 自身をコピーする必要はない。 // 子をコピーする必要がある。複数の親を持つ可能性があるため。 bool bl_lazy = (c->lazy != Monoid_A::unit()); bool bl_rev = c->rev; if (bl_lazy || bl_rev) { c->l = copy_node(c->l); c->r = copy_node(c->r); } if (c->lazy != Monoid_A::unit()) { if (c->l) { c->l->x = ActedMonoid::act(c->l->x, c->lazy, 1); c->l->prod = ActedMonoid::act(c->l->prod, c->lazy, c->l->size); c->l->lazy = Monoid_A::op(c->l->lazy, c->lazy); } if (c->r) { c->r->x = ActedMonoid::act(c->r->x, c->lazy, 1); c->r->prod = ActedMonoid::act(c->r->prod, c->lazy, c->r->size); c->r->lazy = Monoid_A::op(c->r->lazy, c->lazy); } c->lazy = Monoid_A::unit(); } if (c->rev) { if (c->l) { c->l->rev ^= 1; swap(c->l->l, c->l->r); } if (c->r) { c->r->rev ^= 1; swap(c->r->l, c->r->r); } c->rev = 0; } } void update(np c) { // データを保ったまま正常化するだけなので、コピー不要 c->size = 1; c->prod = c->x; if (c->l) { c->size += c->l->size; c->prod = Monoid_X::op(c->l->prod, c->prod); } if (c->r) { c->size += c->r->size; c->prod = Monoid_X::op(c->prod, c->r->prod); } } np merge_rec(np l_root, np r_root) { if (!l_root) return r_root; if (!r_root) return l_root; u32 sl = l_root->size, sr = r_root->size; if (xor128() % (sl + sr) < sl) { prop(l_root); l_root = copy_node(l_root); l_root->r = merge_rec(l_root->r, r_root); update(l_root); return l_root; } prop(r_root); r_root = copy_node(r_root); r_root->l = merge_rec(l_root, r_root->l); update(r_root); return r_root; } pair<np, np> split_rec(np root, u32 k) { if (!root) return {nullptr, nullptr}; prop(root); u32 sl = (root->l ? root->l->size : 0); if (k <= sl) { auto [nl, nr] = split_rec(root->l, k); root = copy_node(root); root->l = nr; update(root); return {nl, root}; } auto [nl, nr] = split_rec(root->r, k - (1 + sl)); root = copy_node(root); root->r = nl; update(root); return {root, nr}; } np set_rec(np root, u32 k, const X &x) { if (!root) return root; prop(root); u32 sl = (root->l ? root->l->size : 0); if (k < sl) { root = copy_node(root); root->l = set_rec(root->l, k, x); update(root); return root; } if (k == sl) { root = copy_node(root); root->x = x; update(root); return root; } root = copy_node(root); root->r = set_rec(root->r, k - (1 + sl), x); update(root); return root; } np multiply_rec(np root, u32 k, const X &x) { if (!root) return root; prop(root); u32 sl = (root->l ? root->l->size : 0); if (k < sl) { root = copy_node(root); root->l = multiply_rec(root->l, k, x); update(root); return root; } if (k == sl) { root = copy_node(root); root->x = Monoid_X::op(root->x, x); update(root); return root; } root = copy_node(root); root->r = multiply_rec(root->r, k - (1 + sl), x); update(root); return root; } X prod_rec(np root, u32 l, u32 r, bool rev) { if (l == 0 && r == root->size) { return root->prod; } np left = (rev ? root->r : root->l); np right = (rev ? root->l : root->r); u32 sl = (left ? left->size : 0); X res = Monoid_X::unit(); if (l < sl) { X y = prod_rec(left, l, min(r, sl), rev ^ root->rev); res = Monoid_X::op(res, ActedMonoid::act(y, root->lazy, min(r, sl) - l)); } if (l <= sl && sl < r) res = Monoid_X::op(res, root->x); u32 k = 1 + sl; if (k < r) { X y = prod_rec(right, max(k, l) - k, r - k, rev ^ root->rev); res = Monoid_X::op(res, ActedMonoid::act(y, root->lazy, r - max(k, l))); } return res; } X get_rec(np root, u32 k, bool rev, A lazy) { np left = (rev ? root->r : root->l); np right = (rev ? root->l : root->r); u32 sl = (left ? left->size : 0); if (k == sl) return ActedMonoid::act(root->x, lazy, 1); lazy = Monoid_A::op(root->lazy, lazy); rev ^= root->rev; if (k < sl) return get_rec(left, k, rev, lazy); return get_rec(right, k - (1 + sl), rev, lazy); } np apply_rec(np root, u32 l, u32 r, const A &a) { prop(root); root = copy_node(root); if (l == 0 && r == root->size) { root->x = ActedMonoid::act(root->x, a, 1); root->prod = ActedMonoid::act(root->prod, a, root->size); root->lazy = a; return root; } u32 sl = (root->l ? root->l->size : 0); if (l < sl) root->l = apply_rec(root->l, l, min(r, sl), a); if (l <= sl && sl < r) root->x = ActedMonoid::act(root->x, a, 1); u32 k = 1 + sl; if (k < r) root->r = apply_rec(root->r, max(k, l) - k, r - k, a); update(root); return root; } template <typename F> pair<np, np> split_max_right_rec(np root, F check, X &x) { if (!root) return {nullptr, nullptr}; prop(root); root = copy_node(root); X y = Monoid_X::op(x, root->prod); if (check(y)) { x = y; return {root, nullptr}; } np left = root->l, right = root->r; if (left) { X y = Monoid_X::op(x, root->l->prod); if (!check(y)) { auto [n1, n2] = split_max_right_rec(left, check, x); root->l = n2; update(root); return {n1, root}; } x = y; } y = Monoid_X::op(x, root->x); if (!check(y)) { root->l = nullptr; update(root); return {left, root}; } x = y; auto [n1, n2] = split_max_right_rec(right, check, x); root->r = n1; update(root); return {root, n2}; } }; #line 2 "random/base.hpp" u64 RNG_64() { static uint64_t x_ = uint64_t(chrono::duration_cast<chrono::nanoseconds>(chrono::high_resolution_clock::now().time_since_epoch()).count()) * 10150724397891781847ULL; x_ ^= x_ << 7; return x_ ^= x_ >> 9; } u64 RNG(u64 lim) { return RNG_64() % lim; } ll RNG(ll l, ll r) { return l + RNG_64() % (r - l); } #line 6 "test/1_mytest/rbst_am.test.cpp" void test() { using AM = ActedMonoid_Min_Assign<int, -1>; using MonoX = typename AM::Monoid_X; RBST_ActedMonoid<AM, false> X(100); FOR(1000) { X.reset(); int N = RNG(1, 20); int Q = RNG(1, 1000); vc<int> A(N); FOR(i, N) A[i] = RNG(1, 100); auto root = X.new_node(A); FOR(Q) { int t = RNG(0, 7); if (t == 0) { int i = RNG(0, N); assert(A[i] == X.get(root, i)); } if (t == 1) { int i = RNG(0, N); int x = RNG(1, 100); root = X.set(root, i, x); A[i] = x; } if (t == 2) { int i = RNG(0, N); int x = RNG(1, 100); root = X.multiply(root, i, x); A[i] = MonoX::op(A[i], x); } if (t == 3) { int L = RNG(0, N); int R = RNG(0, N); if (L > R) swap(L, R); ++R; vc<int> B = {A.begin() + L, A.begin() + R}; assert(X.prod(root, L, R) == MIN(B)); } if (t == 4) { int L = RNG(0, N); int R = RNG(0, N); if (L > R) swap(L, R); ++R; root = X.reverse(root, L, R); reverse(A.begin() + L, A.begin() + R); } if (t == 5) { int L = RNG(0, N); int R = RNG(0, N); if (L > R) swap(L, R); ++R; int x = RNG(1, 100); FOR(i, L, R) A[i] = x; root = X.apply(root, L, R, x); } if (t == 6) { vc<int> B = X.get_all(root); assert(A == B); } } } } void solve() { int a, b; cin >> a >> b; cout << a + b << "\n"; } signed main() { test(); solve(); return 0; }