This documentation is automatically generated by online-judge-tools/verification-helper
#define PROBLEM "https://judge.yosupo.jp/problem/aplusb"
#include "my_template.hpp"
#include "ds/segtree/range_assignment_segtree.hpp"
#include "ds/segtree/lazy_segtree.hpp"
#include "alg/monoid/add.hpp"
#include "alg/acted_monoid/sum_assign.hpp"
#include "random/base.hpp"
struct PROB {
int N, Q;
vc<ll> INIT;
vc<tuple<int, int, int>> QUERY;
};
PROB gen(int N, int Q) {
PROB p;
p.N = N, p.Q = Q;
FOR(N) { p.INIT.eb(RNG(0, 1 << 30)); }
FOR(Q) {
int t = RNG(0, 2);
int l = RNG(0, N), r = RNG(0, N);
int x = RNG(0, 1 << 30);
if (l > r) swap(l, r);
++r;
if (t == 0) p.QUERY.eb(l, r, x);
if (t == 1) p.QUERY.eb(l, r, -1);
}
return p;
}
vi sol_1(PROB p) {
vi ANS;
Lazy_SegTree<ActedMonoid_Sum_Assign<ll, -1>> seg(p.INIT);
for (auto& [l, r, x]: p.QUERY) {
if (x == -1) {
ANS.eb(seg.prod(l, r));
} else {
seg.apply(l, r, x);
}
}
return ANS;
}
vi sol_2(PROB p) {
vi ANS;
Range_Assignment_SegTree<Monoid_Add<ll>> seg(p.INIT);
for (auto& [l, r, x]: p.QUERY) {
if (x == -1) {
ANS.eb(seg.prod(l, r));
} else {
seg.assign(l, r, x);
}
}
return ANS;
}
void test() {
int N = 1 << 22, Q = 1 << 22;
PROB p = gen(N, Q);
double a = clock();
vi A = sol_1(p);
double b = clock();
vi B = sol_2(p);
double c = clock();
a = (b - a) / CLOCKS_PER_SEC;
b = (c - b) / CLOCKS_PER_SEC;
assert(A == B);
// cout << a << "\n"; 1.563 sec
// cout << b << "\n"; 1.376 sec
}
void solve() {
int a, b;
cin >> a >> b;
cout << a + b << "\n";
}
signed main() {
test();
solve();
return 0;
}
#line 1 "test/1_mytest/range_assign.test.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/aplusb"
#line 1 "my_template.hpp"
#if defined(LOCAL)
#include <my_template_compiled.hpp>
#else
// https://codeforces.com/blog/entry/96344
// https://codeforces.com/blog/entry/126772?#comment-1154880
#include <bits/allocator.h>
#pragma GCC optimize("Ofast,unroll-loops")
#pragma GCC target("avx2,popcnt")
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using u8 = uint8_t;
using u16 = uint16_t;
using u32 = uint32_t;
using u64 = uint64_t;
using i128 = __int128;
using u128 = unsigned __int128;
using f128 = __float128;
template <class T>
constexpr T infty = 0;
template <>
constexpr int infty<int> = 1'010'000'000;
template <>
constexpr ll infty<ll> = 2'020'000'000'000'000'000;
template <>
constexpr u32 infty<u32> = infty<int>;
template <>
constexpr u64 infty<u64> = infty<ll>;
template <>
constexpr i128 infty<i128> = i128(infty<ll>) * 2'000'000'000'000'000'000;
template <>
constexpr double infty<double> = infty<ll>;
template <>
constexpr long double infty<long double> = infty<ll>;
using pi = pair<ll, ll>;
using vi = vector<ll>;
template <class T>
using vc = vector<T>;
template <class T>
using vvc = vector<vc<T>>;
template <class T>
using vvvc = vector<vvc<T>>;
template <class T>
using vvvvc = vector<vvvc<T>>;
template <class T>
using vvvvvc = vector<vvvvc<T>>;
template <class T>
using pq = priority_queue<T>;
template <class T>
using pqg = priority_queue<T, vector<T>, greater<T>>;
#define vv(type, name, h, ...) vector<vector<type>> name(h, vector<type>(__VA_ARGS__))
#define vvv(type, name, h, w, ...) vector<vector<vector<type>>> name(h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))
#define vvvv(type, name, a, b, c, ...) \
vector<vector<vector<vector<type>>>> name(a, vector<vector<vector<type>>>(b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))
// https://trap.jp/post/1224/
#define FOR1(a) for (ll _ = 0; _ < ll(a); ++_)
#define FOR2(i, a) for (ll i = 0; i < ll(a); ++i)
#define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i)
#define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c))
#define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i)
#define overload4(a, b, c, d, e, ...) e
#define overload3(a, b, c, d, ...) d
#define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__)
#define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__)
#define all(x) x.begin(), x.end()
#define len(x) ll(x.size())
#define elif else if
#define eb emplace_back
#define mp make_pair
#define mt make_tuple
#define fi first
#define se second
#define stoi stoll
int popcnt(int x) { return __builtin_popcount(x); }
int popcnt(u32 x) { return __builtin_popcount(x); }
int popcnt(ll x) { return __builtin_popcountll(x); }
int popcnt(u64 x) { return __builtin_popcountll(x); }
int popcnt_sgn(int x) { return (__builtin_parity(unsigned(x)) & 1 ? -1 : 1); }
int popcnt_sgn(u32 x) { return (__builtin_parity(x) & 1 ? -1 : 1); }
int popcnt_sgn(ll x) { return (__builtin_parityll(x) & 1 ? -1 : 1); }
int popcnt_sgn(u64 x) { return (__builtin_parityll(x) & 1 ? -1 : 1); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2)
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2)
int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
template <typename T>
T kth_bit(int k) {
return T(1) << k;
}
template <typename T>
bool has_kth_bit(T x, int k) {
return x >> k & 1;
}
template <typename UINT>
struct all_bit {
struct iter {
UINT s;
iter(UINT s) : s(s) {}
int operator*() const { return lowbit(s); }
iter &operator++() {
s &= s - 1;
return *this;
}
bool operator!=(const iter) const { return s != 0; }
};
UINT s;
all_bit(UINT s) : s(s) {}
iter begin() const { return iter(s); }
iter end() const { return iter(0); }
};
template <typename UINT>
struct all_subset {
static_assert(is_unsigned<UINT>::value);
struct iter {
UINT s, t;
bool ed;
iter(UINT s) : s(s), t(s), ed(0) {}
int operator*() const { return s ^ t; }
iter &operator++() {
(t == 0 ? ed = 1 : t = (t - 1) & s);
return *this;
}
bool operator!=(const iter) const { return !ed; }
};
UINT s;
all_subset(UINT s) : s(s) {}
iter begin() const { return iter(s); }
iter end() const { return iter(0); }
};
template <typename T>
T floor(T a, T b) {
return a / b - (a % b && (a ^ b) < 0);
}
template <typename T>
T ceil(T x, T y) {
return floor(x + y - 1, y);
}
template <typename T>
T bmod(T x, T y) {
return x - y * floor(x, y);
}
template <typename T>
pair<T, T> divmod(T x, T y) {
T q = floor(x, y);
return {q, x - q * y};
}
template <typename T, typename U>
T SUM(const vector<U> &A) {
T sm = 0;
for (auto &&a: A) sm += a;
return sm;
}
#define MIN(v) *min_element(all(v))
#define MAX(v) *max_element(all(v))
#define LB(c, x) distance((c).begin(), lower_bound(all(c), (x)))
#define UB(c, x) distance((c).begin(), upper_bound(all(c), (x)))
#define UNIQUE(x) sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit()
template <typename T>
T POP(deque<T> &que) {
T a = que.front();
que.pop_front();
return a;
}
template <typename T>
T POP(pq<T> &que) {
T a = que.top();
que.pop();
return a;
}
template <typename T>
T POP(pqg<T> &que) {
T a = que.top();
que.pop();
return a;
}
template <typename T>
T POP(vc<T> &que) {
T a = que.back();
que.pop_back();
return a;
}
template <typename F>
ll binary_search(F check, ll ok, ll ng, bool check_ok = true) {
if (check_ok) assert(check(ok));
while (abs(ok - ng) > 1) {
auto x = (ng + ok) / 2;
(check(x) ? ok : ng) = x;
}
return ok;
}
template <typename F>
double binary_search_real(F check, double ok, double ng, int iter = 100) {
FOR(iter) {
double x = (ok + ng) / 2;
(check(x) ? ok : ng) = x;
}
return (ok + ng) / 2;
}
template <class T, class S>
inline bool chmax(T &a, const S &b) {
return (a < b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chmin(T &a, const S &b) {
return (a > b ? a = b, 1 : 0);
}
// ? は -1
vc<int> s_to_vi(const string &S, char first_char) {
vc<int> A(S.size());
FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); }
return A;
}
template <typename T, typename U>
vector<T> cumsum(vector<U> &A, int off = 1) {
int N = A.size();
vector<T> B(N + 1);
FOR(i, N) { B[i + 1] = B[i] + A[i]; }
if (off == 0) B.erase(B.begin());
return B;
}
// stable sort
template <typename T>
vector<int> argsort(const vector<T> &A) {
vector<int> ids(len(A));
iota(all(ids), 0);
sort(all(ids), [&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); });
return ids;
}
// A[I[0]], A[I[1]], ...
template <typename T>
vc<T> rearrange(const vc<T> &A, const vc<int> &I) {
vc<T> B(len(I));
FOR(i, len(I)) B[i] = A[I[i]];
return B;
}
template <typename T, typename... Vectors>
void concat(vc<T> &first, const Vectors &... others) {
vc<T> &res = first;
(res.insert(res.end(), others.begin(), others.end()), ...);
}
#endif
#line 3 "test/1_mytest/range_assign.test.cpp"
#line 2 "ds/segtree/segtree.hpp"
template <class Monoid>
struct SegTree {
using MX = Monoid;
using X = typename MX::value_type;
using value_type = X;
vc<X> dat;
int n, log, size;
SegTree() {}
SegTree(int n) { build(n); }
template <typename F>
SegTree(int n, F f) {
build(n, f);
}
SegTree(const vc<X>& v) { build(v); }
void build(int m) {
build(m, [](int i) -> X { return MX::unit(); });
}
void build(const vc<X>& v) {
build(len(v), [&](int i) -> X { return v[i]; });
}
template <typename F>
void build(int m, F f) {
n = m, log = 1;
while ((1 << log) < n) ++log;
size = 1 << log;
dat.assign(size << 1, MX::unit());
FOR(i, n) dat[size + i] = f(i);
FOR_R(i, 1, size) update(i);
}
X get(int i) { return dat[size + i]; }
vc<X> get_all() { return {dat.begin() + size, dat.begin() + size + n}; }
void update(int i) { dat[i] = Monoid::op(dat[2 * i], dat[2 * i + 1]); }
void set(int i, const X& x) {
assert(i < n);
dat[i += size] = x;
while (i >>= 1) update(i);
}
void multiply(int i, const X& x) {
assert(i < n);
i += size;
dat[i] = Monoid::op(dat[i], x);
while (i >>= 1) update(i);
}
X prod(int L, int R) {
assert(0 <= L && L <= R && R <= n);
X vl = Monoid::unit(), vr = Monoid::unit();
L += size, R += size;
while (L < R) {
if (L & 1) vl = Monoid::op(vl, dat[L++]);
if (R & 1) vr = Monoid::op(dat[--R], vr);
L >>= 1, R >>= 1;
}
return Monoid::op(vl, vr);
}
X prod_all() { return dat[1]; }
template <class F>
int max_right(F check, int L) {
assert(0 <= L && L <= n && check(Monoid::unit()));
if (L == n) return n;
L += size;
X sm = Monoid::unit();
do {
while (L % 2 == 0) L >>= 1;
if (!check(Monoid::op(sm, dat[L]))) {
while (L < size) {
L = 2 * L;
if (check(Monoid::op(sm, dat[L]))) { sm = Monoid::op(sm, dat[L++]); }
}
return L - size;
}
sm = Monoid::op(sm, dat[L++]);
} while ((L & -L) != L);
return n;
}
template <class F>
int min_left(F check, int R) {
assert(0 <= R && R <= n && check(Monoid::unit()));
if (R == 0) return 0;
R += size;
X sm = Monoid::unit();
do {
--R;
while (R > 1 && (R % 2)) R >>= 1;
if (!check(Monoid::op(dat[R], sm))) {
while (R < size) {
R = 2 * R + 1;
if (check(Monoid::op(dat[R], sm))) { sm = Monoid::op(dat[R--], sm); }
}
return R + 1 - size;
}
sm = Monoid::op(dat[R], sm);
} while ((R & -R) != R);
return 0;
}
// prod_{l<=i<r} A[i xor x]
X xor_prod(int l, int r, int xor_val) {
static_assert(Monoid::commute);
X x = Monoid::unit();
for (int k = 0; k < log + 1; ++k) {
if (l >= r) break;
if (l & 1) { x = Monoid::op(x, dat[(size >> k) + ((l++) ^ xor_val)]); }
if (r & 1) { x = Monoid::op(x, dat[(size >> k) + ((--r) ^ xor_val)]); }
l /= 2, r /= 2, xor_val /= 2;
}
return x;
}
};
#line 2 "alg/monoid_pow.hpp"
// chat gpt
template <typename U, typename Arg1, typename Arg2>
struct has_power_method {
private:
// ヘルパー関数の実装
template <typename V, typename A1, typename A2>
static auto check(int)
-> decltype(std::declval<V>().power(std::declval<A1>(),
std::declval<A2>()),
std::true_type{});
template <typename, typename, typename>
static auto check(...) -> std::false_type;
public:
// メソッドの有無を表す型
static constexpr bool value = decltype(check<U, Arg1, Arg2>(0))::value;
};
template <typename Monoid>
typename Monoid::X monoid_pow(typename Monoid::X x, ll exp) {
using X = typename Monoid::X;
if constexpr (has_power_method<Monoid, X, ll>::value) {
return Monoid::power(x, exp);
} else {
assert(exp >= 0);
X res = Monoid::unit();
while (exp) {
if (exp & 1) res = Monoid::op(res, x);
x = Monoid::op(x, x);
exp >>= 1;
}
return res;
}
}
#line 2 "ds/fastset.hpp"
// 64-ary tree
// space: (N/63) * u64
struct FastSet {
static constexpr u32 B = 64;
int n, log;
vvc<u64> seg;
FastSet() {}
FastSet(int n) { build(n); }
int size() { return n; }
template <typename F>
FastSet(int n, F f) {
build(n, f);
}
void build(int m) {
seg.clear();
n = m;
do {
seg.push_back(vc<u64>((m + B - 1) / B));
m = (m + B - 1) / B;
} while (m > 1);
log = len(seg);
}
template <typename F>
void build(int n, F f) {
build(n);
FOR(i, n) { seg[0][i / B] |= u64(f(i)) << (i % B); }
FOR(h, log - 1) {
FOR(i, len(seg[h])) { seg[h + 1][i / B] |= u64(bool(seg[h][i])) << (i % B); }
}
}
bool operator[](int i) const { return seg[0][i / B] >> (i % B) & 1; }
void insert(int i) {
assert(0 <= i && i < n);
for (int h = 0; h < log; h++) { seg[h][i / B] |= u64(1) << (i % B), i /= B; }
}
void add(int i) { insert(i); }
void erase(int i) {
assert(0 <= i && i < n);
u64 x = 0;
for (int h = 0; h < log; h++) {
seg[h][i / B] &= ~(u64(1) << (i % B));
seg[h][i / B] |= x << (i % B);
x = bool(seg[h][i / B]);
i /= B;
}
}
void remove(int i) { erase(i); }
// min[x,n) or n
int next(int i) {
assert(i <= n);
chmax(i, 0);
for (int h = 0; h < log; h++) {
if (i / B == seg[h].size()) break;
u64 d = seg[h][i / B] >> (i % B);
if (!d) {
i = i / B + 1;
continue;
}
i += lowbit(d);
for (int g = h - 1; g >= 0; g--) {
i *= B;
i += lowbit(seg[g][i / B]);
}
return i;
}
return n;
}
// max [0,x], or -1
int prev(int i) {
assert(i >= -1);
if (i >= n) i = n - 1;
for (int h = 0; h < log; h++) {
if (i == -1) break;
u64 d = seg[h][i / B] << (63 - i % B);
if (!d) {
i = i / B - 1;
continue;
}
i -= __builtin_clzll(d);
for (int g = h - 1; g >= 0; g--) {
i *= B;
i += topbit(seg[g][i / B]);
}
return i;
}
return -1;
}
bool any(int l, int r) { return next(l) < r; }
// [l, r)
template <typename F>
void enumerate(int l, int r, F f) {
for (int x = next(l); x < r; x = next(x + 1)) f(x);
}
string to_string() {
string s(n, '?');
for (int i = 0; i < n; ++i) s[i] = ((*this)[i] ? '1' : '0');
return s;
}
};
#line 4 "ds/segtree/range_assignment_segtree.hpp"
template <typename Monoid>
struct Range_Assignment_SegTree {
using MX = Monoid;
using X = typename MX::value_type;
int n;
SegTree<MX> seg;
FastSet cut;
vc<X> dat;
Range_Assignment_SegTree() {}
Range_Assignment_SegTree(int n) { build(n); }
template <typename F>
Range_Assignment_SegTree(int n, F f) {
build(n, f);
}
Range_Assignment_SegTree(const vc<X> &v) { build(v); }
void build(int m) {
build(m, [](int i) -> X { return MX::unit(); });
}
void build(const vc<X> &v) {
build(len(v), [&](int i) -> X { return v[i]; });
}
template <typename F>
void build(int m, F f) {
n = m;
seg.build(m, f), cut.build(n, [&](int i) -> int { return 1; });
dat = seg.get_all();
}
X prod(int l, int r) {
int a = cut.prev(l), b = cut.next(l), c = cut.prev(r);
if (a == c) { return monoid_pow<MX>(dat[a], r - l); };
assert(b <= c);
X x = monoid_pow<MX>(dat[a], b - l);
X y = seg.prod(b, c);
X z = monoid_pow<MX>(dat[c], r - c);
return MX::op(MX::op(x, y), z);
}
X prod_all() { return seg.prod_all(); }
void assign(int l, int r, X x) {
int a = cut.prev(l), b = cut.next(r);
if (a < l) seg.set(a, monoid_pow<MX>(dat[a], l - a));
if (r < b) {
X y = dat[cut.prev(r)];
dat[r] = y, cut.insert(r), seg.set(r, monoid_pow<MX>(y, b - r));
}
cut.enumerate(l + 1, r, [&](int i) -> void { seg.set(i, MX::unit()), cut.erase(i); });
dat[l] = x, cut.insert(l), seg.set(l, monoid_pow<MX>(x, r - l));
}
};
#line 2 "ds/segtree/lazy_segtree.hpp"
template <typename ActedMonoid>
struct Lazy_SegTree {
using AM = ActedMonoid;
using MX = typename AM::Monoid_X;
using MA = typename AM::Monoid_A;
using X = typename MX::value_type;
using A = typename MA::value_type;
int n, log, size;
vc<X> dat;
vc<A> laz;
Lazy_SegTree() {}
Lazy_SegTree(int n) { build(n); }
template <typename F>
Lazy_SegTree(int n, F f) {
build(n, f);
}
Lazy_SegTree(const vc<X>& v) { build(v); }
void build(int m) {
build(m, [](int i) -> X { return MX::unit(); });
}
void build(const vc<X>& v) {
build(len(v), [&](int i) -> X { return v[i]; });
}
template <typename F>
void build(int m, F f) {
n = m, log = 1;
while ((1 << log) < n) ++log;
size = 1 << log;
dat.assign(size << 1, MX::unit());
laz.assign(size, MA::unit());
FOR(i, n) dat[size + i] = f(i);
FOR_R(i, 1, size) update(i);
}
void update(int k) { dat[k] = MX::op(dat[2 * k], dat[2 * k + 1]); }
void set(int p, X x) {
assert(0 <= p && p < n);
p += size;
for (int i = log; i >= 1; i--) push(p >> i);
dat[p] = x;
for (int i = 1; i <= log; i++) update(p >> i);
}
void multiply(int p, const X& x) {
assert(0 <= p && p < n);
p += size;
for (int i = log; i >= 1; i--) push(p >> i);
dat[p] = MX::op(dat[p], x);
for (int i = 1; i <= log; i++) update(p >> i);
}
X get(int p) {
assert(0 <= p && p < n);
p += size;
for (int i = log; i >= 1; i--) push(p >> i);
return dat[p];
}
vc<X> get_all() {
FOR(k, 1, size) { push(k); }
return {dat.begin() + size, dat.begin() + size + n};
}
X prod(int l, int r) {
assert(0 <= l && l <= r && r <= n);
if (l == r) return MX::unit();
l += size, r += size;
for (int i = log; i >= 1; i--) {
if (((l >> i) << i) != l) push(l >> i);
if (((r >> i) << i) != r) push((r - 1) >> i);
}
X xl = MX::unit(), xr = MX::unit();
while (l < r) {
if (l & 1) xl = MX::op(xl, dat[l++]);
if (r & 1) xr = MX::op(dat[--r], xr);
l >>= 1, r >>= 1;
}
return MX::op(xl, xr);
}
X prod_all() { return dat[1]; }
void apply(int l, int r, A a) {
assert(0 <= l && l <= r && r <= n);
if (l == r) return;
l += size, r += size;
for (int i = log; i >= 1; i--) {
if (((l >> i) << i) != l) push(l >> i);
if (((r >> i) << i) != r) push((r - 1) >> i);
}
int l2 = l, r2 = r;
while (l < r) {
if (l & 1) apply_at(l++, a);
if (r & 1) apply_at(--r, a);
l >>= 1, r >>= 1;
}
l = l2, r = r2;
for (int i = 1; i <= log; i++) {
if (((l >> i) << i) != l) update(l >> i);
if (((r >> i) << i) != r) update((r - 1) >> i);
}
}
template <typename F>
int max_right(const F check, int l) {
assert(0 <= l && l <= n);
assert(check(MX::unit()));
if (l == n) return n;
l += size;
for (int i = log; i >= 1; i--) push(l >> i);
X sm = MX::unit();
do {
while (l % 2 == 0) l >>= 1;
if (!check(MX::op(sm, dat[l]))) {
while (l < size) {
push(l);
l = (2 * l);
if (check(MX::op(sm, dat[l]))) { sm = MX::op(sm, dat[l++]); }
}
return l - size;
}
sm = MX::op(sm, dat[l++]);
} while ((l & -l) != l);
return n;
}
template <typename F>
int min_left(const F check, int r) {
assert(0 <= r && r <= n);
assert(check(MX::unit()));
if (r == 0) return 0;
r += size;
for (int i = log; i >= 1; i--) push((r - 1) >> i);
X sm = MX::unit();
do {
r--;
while (r > 1 && (r % 2)) r >>= 1;
if (!check(MX::op(dat[r], sm))) {
while (r < size) {
push(r);
r = (2 * r + 1);
if (check(MX::op(dat[r], sm))) { sm = MX::op(dat[r--], sm); }
}
return r + 1 - size;
}
sm = MX::op(dat[r], sm);
} while ((r & -r) != r);
return 0;
}
private:
void apply_at(int k, A a) {
ll sz = 1 << (log - topbit(k));
dat[k] = AM::act(dat[k], a, sz);
if (k < size) laz[k] = MA::op(laz[k], a);
}
void push(int k) {
if (laz[k] == MA::unit()) return;
apply_at(2 * k, laz[k]), apply_at(2 * k + 1, laz[k]);
laz[k] = MA::unit();
}
};
#line 2 "alg/monoid/add.hpp"
template <typename E>
struct Monoid_Add {
using X = E;
using value_type = X;
static constexpr X op(const X &x, const X &y) noexcept { return x + y; }
static constexpr X inverse(const X &x) noexcept { return -x; }
static constexpr X power(const X &x, ll n) noexcept { return X(n) * x; }
static constexpr X unit() { return X(0); }
static constexpr bool commute = true;
};
#line 2 "alg/monoid/assign.hpp"
template <typename X, int none_val>
struct Monoid_Assign {
using value_type = X;
static X op(X x, X y) { return (y == X(none_val) ? x : y); }
static constexpr X unit() { return X(none_val); }
static constexpr bool commute = false;
};
#line 3 "alg/acted_monoid/sum_assign.hpp"
template <typename E, E none_val>
struct ActedMonoid_Sum_Assign {
using Monoid_X = Monoid_Add<E>;
using Monoid_A = Monoid_Assign<E, none_val>;
using X = typename Monoid_X::value_type;
using A = typename Monoid_A::value_type;
static constexpr X act(const X &x, const A &a, const ll &size) {
if (a == Monoid_A::unit()) return x;
return a * E(size);
}
};
#line 2 "random/base.hpp"
u64 RNG_64() {
static u64 x_ = u64(chrono::duration_cast<chrono::nanoseconds>(chrono::high_resolution_clock::now().time_since_epoch()).count()) * 10150724397891781847ULL;
x_ ^= x_ << 7;
return x_ ^= x_ >> 9;
}
u64 RNG(u64 lim) { return RNG_64() % lim; }
ll RNG(ll l, ll r) { return l + RNG_64() % (r - l); }
#line 9 "test/1_mytest/range_assign.test.cpp"
struct PROB {
int N, Q;
vc<ll> INIT;
vc<tuple<int, int, int>> QUERY;
};
PROB gen(int N, int Q) {
PROB p;
p.N = N, p.Q = Q;
FOR(N) { p.INIT.eb(RNG(0, 1 << 30)); }
FOR(Q) {
int t = RNG(0, 2);
int l = RNG(0, N), r = RNG(0, N);
int x = RNG(0, 1 << 30);
if (l > r) swap(l, r);
++r;
if (t == 0) p.QUERY.eb(l, r, x);
if (t == 1) p.QUERY.eb(l, r, -1);
}
return p;
}
vi sol_1(PROB p) {
vi ANS;
Lazy_SegTree<ActedMonoid_Sum_Assign<ll, -1>> seg(p.INIT);
for (auto& [l, r, x]: p.QUERY) {
if (x == -1) {
ANS.eb(seg.prod(l, r));
} else {
seg.apply(l, r, x);
}
}
return ANS;
}
vi sol_2(PROB p) {
vi ANS;
Range_Assignment_SegTree<Monoid_Add<ll>> seg(p.INIT);
for (auto& [l, r, x]: p.QUERY) {
if (x == -1) {
ANS.eb(seg.prod(l, r));
} else {
seg.assign(l, r, x);
}
}
return ANS;
}
void test() {
int N = 1 << 22, Q = 1 << 22;
PROB p = gen(N, Q);
double a = clock();
vi A = sol_1(p);
double b = clock();
vi B = sol_2(p);
double c = clock();
a = (b - a) / CLOCKS_PER_SEC;
b = (c - b) / CLOCKS_PER_SEC;
assert(A == B);
// cout << a << "\n"; 1.563 sec
// cout << b << "\n"; 1.376 sec
}
void solve() {
int a, b;
cin >> a >> b;
cout << a + b << "\n";
}
signed main() {
test();
solve();
return 0;
}