This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub maspypy/library
#define PROBLEM "https://judge.yosupo.jp/problem/aplusb" #include "my_template.hpp" #include "random/base.hpp" #include "nt/nimber/nimber_log.hpp" void test_16() { FOR(n, 1, 65536) { Nimber16 x(n); u64 m = nimber_log(x); assert(root_16.pow(m) == x); } } void test_32() { FOR(1 << 15) { Nimber32 x(RNG_64()); if (x == 0) continue; u64 n = nimber_log(x); assert(root_32.pow(n) == x); } } void test_64() { FOR(1 << 15) { Nimber64 x(RNG_64()); if (x == 0) continue; u64 n = nimber_log(x); assert(root_64.pow(n) == x); } FOR(1 << 15) { Nimber64 x(RNG_64()); Nimber64 y(RNG_64()); if (x == 0 || y == 0) continue; u64 n = nimber_log(x, y); if (n != u64(-1)) assert(x.pow(n) == y); } FOR(1 << 15) { Nimber64 x(RNG_64()); u64 n = RNG_64(); Nimber64 y = x.pow(n); u64 m = nimber_log(x, y); assert(m != u64(-1) && x.pow(m) == y); } } void solve() { int a, b; cin >> a >> b; cout << a + b << "\n"; } signed main() { test_16(); test_32(); test_64(); solve(); return 0; }
#line 1 "test/1_mytest/nimber_log.test.cpp" #define PROBLEM "https://judge.yosupo.jp/problem/aplusb" #line 1 "my_template.hpp" #if defined(LOCAL) #include <my_template_compiled.hpp> #else // https://codeforces.com/blog/entry/96344 #pragma GCC optimize("Ofast,unroll-loops") // いまの CF だとこれ入れると動かない? // #pragma GCC target("avx2,popcnt") #include <bits/stdc++.h> using namespace std; using ll = long long; using u8 = uint8_t; using u16 = uint16_t; using u32 = uint32_t; using u64 = uint64_t; using i128 = __int128; using u128 = unsigned __int128; using f128 = __float128; template <class T> constexpr T infty = 0; template <> constexpr int infty<int> = 1'010'000'000; template <> constexpr ll infty<ll> = 2'020'000'000'000'000'000; template <> constexpr u32 infty<u32> = infty<int>; template <> constexpr u64 infty<u64> = infty<ll>; template <> constexpr i128 infty<i128> = i128(infty<ll>) * 2'000'000'000'000'000'000; template <> constexpr double infty<double> = infty<ll>; template <> constexpr long double infty<long double> = infty<ll>; using pi = pair<ll, ll>; using vi = vector<ll>; template <class T> using vc = vector<T>; template <class T> using vvc = vector<vc<T>>; template <class T> using vvvc = vector<vvc<T>>; template <class T> using vvvvc = vector<vvvc<T>>; template <class T> using vvvvvc = vector<vvvvc<T>>; template <class T> using pq = priority_queue<T>; template <class T> using pqg = priority_queue<T, vector<T>, greater<T>>; #define vv(type, name, h, ...) vector<vector<type>> name(h, vector<type>(__VA_ARGS__)) #define vvv(type, name, h, w, ...) vector<vector<vector<type>>> name(h, vector<vector<type>>(w, vector<type>(__VA_ARGS__))) #define vvvv(type, name, a, b, c, ...) \ vector<vector<vector<vector<type>>>> name(a, vector<vector<vector<type>>>(b, vector<vector<type>>(c, vector<type>(__VA_ARGS__)))) // https://trap.jp/post/1224/ #define FOR1(a) for (ll _ = 0; _ < ll(a); ++_) #define FOR2(i, a) for (ll i = 0; i < ll(a); ++i) #define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i) #define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c)) #define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i) #define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i) #define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i) #define overload4(a, b, c, d, e, ...) e #define overload3(a, b, c, d, ...) d #define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__) #define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__) #define all(x) x.begin(), x.end() #define len(x) ll(x.size()) #define elif else if #define eb emplace_back #define mp make_pair #define mt make_tuple #define fi first #define se second #define stoi stoll int popcnt(int x) { return __builtin_popcount(x); } int popcnt(u32 x) { return __builtin_popcount(x); } int popcnt(ll x) { return __builtin_popcountll(x); } int popcnt(u64 x) { return __builtin_popcountll(x); } int popcnt_sgn(int x) { return (__builtin_parity(unsigned(x)) & 1 ? -1 : 1); } int popcnt_sgn(u32 x) { return (__builtin_parity(x) & 1 ? -1 : 1); } int popcnt_sgn(ll x) { return (__builtin_parityll(x) & 1 ? -1 : 1); } int popcnt_sgn(u64 x) { return (__builtin_parityll(x) & 1 ? -1 : 1); } // (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2) int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); } int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); } int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); } int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); } // (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2) int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); } int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); } int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); } int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); } template <typename T> T kth_bit(int k) { return T(1) << k; } template <typename T> bool has_kth_bit(T x, int k) { return x >> k & 1; } template <typename UINT> struct all_bit { struct iter { UINT s; iter(UINT s) : s(s) {} int operator*() const { return lowbit(s); } iter &operator++() { s &= s - 1; return *this; } bool operator!=(const iter) const { return s != 0; } }; UINT s; all_bit(UINT s) : s(s) {} iter begin() const { return iter(s); } iter end() const { return iter(0); } }; template <typename UINT> struct all_subset { static_assert(is_unsigned<UINT>::value); struct iter { UINT s, t; bool ed; iter(UINT s) : s(s), t(s), ed(0) {} int operator*() const { return s ^ t; } iter &operator++() { (t == 0 ? ed = 1 : t = (t - 1) & s); return *this; } bool operator!=(const iter) const { return !ed; } }; UINT s; all_subset(UINT s) : s(s) {} iter begin() const { return iter(s); } iter end() const { return iter(0); } }; template <typename T> T floor(T a, T b) { return a / b - (a % b && (a ^ b) < 0); } template <typename T> T ceil(T x, T y) { return floor(x + y - 1, y); } template <typename T> T bmod(T x, T y) { return x - y * floor(x, y); } template <typename T> pair<T, T> divmod(T x, T y) { T q = floor(x, y); return {q, x - q * y}; } template <typename T, typename U> T SUM(const vector<U> &A) { T sm = 0; for (auto &&a: A) sm += a; return sm; } #define MIN(v) *min_element(all(v)) #define MAX(v) *max_element(all(v)) #define LB(c, x) distance((c).begin(), lower_bound(all(c), (x))) #define UB(c, x) distance((c).begin(), upper_bound(all(c), (x))) #define UNIQUE(x) sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit() template <typename T> T POP(deque<T> &que) { T a = que.front(); que.pop_front(); return a; } template <typename T> T POP(pq<T> &que) { T a = que.top(); que.pop(); return a; } template <typename T> T POP(pqg<T> &que) { T a = que.top(); que.pop(); return a; } template <typename T> T POP(vc<T> &que) { T a = que.back(); que.pop_back(); return a; } template <typename F> ll binary_search(F check, ll ok, ll ng, bool check_ok = true) { if (check_ok) assert(check(ok)); while (abs(ok - ng) > 1) { auto x = (ng + ok) / 2; (check(x) ? ok : ng) = x; } return ok; } template <typename F> double binary_search_real(F check, double ok, double ng, int iter = 100) { FOR(iter) { double x = (ok + ng) / 2; (check(x) ? ok : ng) = x; } return (ok + ng) / 2; } template <class T, class S> inline bool chmax(T &a, const S &b) { return (a < b ? a = b, 1 : 0); } template <class T, class S> inline bool chmin(T &a, const S &b) { return (a > b ? a = b, 1 : 0); } // ? は -1 vc<int> s_to_vi(const string &S, char first_char) { vc<int> A(S.size()); FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); } return A; } template <typename T, typename U> vector<T> cumsum(vector<U> &A, int off = 1) { int N = A.size(); vector<T> B(N + 1); FOR(i, N) { B[i + 1] = B[i] + A[i]; } if (off == 0) B.erase(B.begin()); return B; } // stable sort template <typename T> vector<int> argsort(const vector<T> &A) { vector<int> ids(len(A)); iota(all(ids), 0); sort(all(ids), [&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); }); return ids; } // A[I[0]], A[I[1]], ... template <typename T> vc<T> rearrange(const vc<T> &A, const vc<int> &I) { vc<T> B(len(I)); FOR(i, len(I)) B[i] = A[I[i]]; return B; } template <typename T, typename... Vectors> void concat(vc<T> &first, const Vectors &... others) { vc<T> &res = first; (res.insert(res.end(), others.begin(), others.end()), ...); } #endif #line 3 "test/1_mytest/nimber_log.test.cpp" #line 2 "random/base.hpp" u64 RNG_64() { static u64 x_ = u64(chrono::duration_cast<chrono::nanoseconds>(chrono::high_resolution_clock::now().time_since_epoch()).count()) * 10150724397891781847ULL; x_ ^= x_ << 7; return x_ ^= x_ >> 9; } u64 RNG(u64 lim) { return RNG_64() % lim; } ll RNG(ll l, ll r) { return l + RNG_64() % (r - l); } #line 2 "nt/nimber/nimber_impl.hpp" namespace NIM_PRODUCT { u16 E[65535 * 2 + 7]; u16 L[65536]; u64 S[4][65536]; u64 SR[4][65536]; u16 p16_15(u16 a, u16 b) { return (a && b ? E[u32(L[a]) + L[b] + 3] : 0); } u16 p16_15_15(u16 a, u16 b) { return (a && b ? E[u32(L[a]) + L[b] + 6] : 0); } u16 mul_15(u16 a) { return (a ? E[3 + L[a]] : 0); } u16 mul_15_15(u16 a) { return (a ? E[6 + L[a]] : 0); } u32 p32_mul_31(u32 a, u32 b) { u16 al = a & 65535, ah = a >> 16, bl = b & 65535, bh = b >> 16; u16 x = p16_15(al, bl); u16 y = p16_15_15(ah, bh); u16 z = p16_15(al ^ ah, bl ^ bh); return u32(y ^ z) << 16 | mul_15(z ^ x); } u32 mul_31(u32 a) { u16 al = a & 65535, ah = a >> 16; return u32(mul_15(al ^ ah)) << 16 | mul_15_15(ah); } u16 prod(u16 a, u16 b) { return (a && b ? E[u32(L[a]) + L[b]] : 0); } u32 prod(u32 a, u32 b) { u16 al = a & 65535, ah = a >> 16, bl = b & 65535, bh = b >> 16; u16 c = prod(al, bl); return u32(prod(u16(al ^ ah), u16(bl ^ bh)) ^ c) << 16 | (p16_15(ah, bh) ^ c); } u64 prod(u64 a, u64 b) { u32 al = a & 0xffffffff, ah = a >> 32, bl = b & 0xffffffff, bh = b >> 32; u32 c = prod(al, bl); return u64(prod(al ^ ah, bl ^ bh) ^ c) << 32 ^ (p32_mul_31(ah, bh) ^ c); } u16 square(u16 a) { return S[0][a]; } u32 square(u32 a) { return S[0][a & 65535] ^ S[1][a >> 16]; } u64 square(u64 a) { return S[0][a & 65535] ^ S[1][a >> 16 & 65535] ^ S[2][a >> 32 & 65535] ^ S[3][a >> 48 & 65535]; } u16 sqrt(u16 a) { return SR[0][a]; } u32 sqrt(u32 a) { return SR[0][a & 65535] ^ SR[1][a >> 16]; } u64 sqrt(u64 a) { return SR[0][a & 65535] ^ SR[1][a >> 16 & 65535] ^ SR[2][a >> 32 & 65535] ^ SR[3][a >> 48 & 65535]; } // inv: 2^16 の共役が 2^16+1 であることなどを使う. x^{-1}=y(xy)^{-1} という要領. u16 inverse(u16 a) { return E[65535 - L[a]]; } u32 inverse(u32 a) { if (a < 65536) return inverse(u16(a)); u16 al = a & 65535, ah = a >> 16; u16 norm = prod(al, al ^ ah) ^ E[L[ah] * 2 + 3]; int k = 65535 - L[norm]; al = (al ^ ah ? E[L[al ^ ah] + k] : 0), ah = E[L[ah] + k]; return al | u32(ah) << 16; } u64 inverse(u64 a) { if (a <= u32(-1)) return inverse(u32(a)); u32 al = a & 0xffffffff, ah = a >> 32; u32 norm = prod(al, al ^ ah) ^ mul_31(square(ah)); u32 i = inverse(norm); return prod(al ^ ah, i) | u64(prod(ah, i)) << 32; } void __attribute__((constructor)) init_nim_table() { // 2^16 未満のところについて原始根 10279 での指数対数表を作る // 2^k との積 u16 tmp[] = {10279, 15417, 35722, 52687, 44124, 62628, 15661, 5686, 3862, 1323, 334, 647, 61560, 20636, 4267, 8445}; u16 nxt[65536]; FOR(i, 16) { FOR(s, 1 << i) { nxt[s | 1 << i] = nxt[s] ^ tmp[i]; } } E[0] = 1; FOR(i, 65534) E[i + 1] = nxt[E[i]]; memcpy(E + 65535, E, 131070); memcpy(E + 131070, E, 14); FOR(i, 65535) L[E[i]] = i; FOR(t, 4) { FOR(i, 16) { int k = 16 * t + i; u64 X = prod(u64(1) << k, u64(1) << k); FOR(s, 1 << i) S[t][s | 1 << i] = S[t][s] ^ X; } } FOR(t, 4) { FOR(i, 16) { int k = 16 * t + i; u64 X = u64(1) << k; FOR(63) X = square(X); FOR(s, 1 << i) SR[t][s | 1 << i] = SR[t][s] ^ X; } } } } // namespace NIM_PRODUCT #line 3 "nt/nimber/base.hpp" template <typename UINT> struct Nimber { using F = Nimber; UINT val; constexpr Nimber(UINT x = 0) : val(x) {} F &operator+=(const F &p) { val ^= p.val; return *this; } F &operator-=(const F &p) { val ^= p.val; return *this; } F &operator*=(const F &p) { val = NIM_PRODUCT::prod(val, p.val); return *this; } F &operator/=(const F &p) { *this *= p.inverse(); return *this; } F operator-() const { return *this; } F operator+(const F &p) const { return F(*this) += p; } F operator-(const F &p) const { return F(*this) -= p; } F operator*(const F &p) const { return F(*this) *= p; } F operator/(const F &p) const { return F(*this) /= p; } bool operator==(const F &p) const { return val == p.val; } bool operator!=(const F &p) const { return val != p.val; } F inverse() const { return NIM_PRODUCT::inverse(val); } F pow(u64 n) const { assert(n >= 0); UINT ret = 1, mul = val; while (n > 0) { if (n & 1) ret = NIM_PRODUCT::prod(ret, mul); mul = NIM_PRODUCT::square(mul); n >>= 1; } return F(ret); } F square() { return F(NIM_PRODUCT::square(val)); } F sqrt() { return F(NIM_PRODUCT::sqrt(val)); } }; #ifdef FASTIO template <typename T> void rd(Nimber<T> &x) { fastio::rd(x.val); } template <typename T> void wt(Nimber<T> &x) { fastio::wt(x.val); } #endif using Nimber16 = Nimber<u16>; using Nimber32 = Nimber<u32>; using Nimber64 = Nimber<u64>; #line 2 "ds/hashmap.hpp" // u64 -> Val template <typename Val> struct HashMap { // n は入れたいものの個数で ok HashMap(u32 n = 0) { build(n); } void build(u32 n) { u32 k = 8; while (k < n * 2) k *= 2; cap = k / 2, mask = k - 1; key.resize(k), val.resize(k), used.assign(k, 0); } // size を保ったまま. size=0 にするときは build すること. void clear() { used.assign(len(used), 0); cap = (mask + 1) / 2; } int size() { return len(used) / 2 - cap; } int index(const u64& k) { int i = 0; for (i = hash(k); used[i] && key[i] != k; i = (i + 1) & mask) {} return i; } Val& operator[](const u64& k) { if (cap == 0) extend(); int i = index(k); if (!used[i]) { used[i] = 1, key[i] = k, val[i] = Val{}, --cap; } return val[i]; } Val get(const u64& k, Val default_value) { int i = index(k); return (used[i] ? val[i] : default_value); } bool count(const u64& k) { int i = index(k); return used[i] && key[i] == k; } // f(key, val) template <typename F> void enumerate_all(F f) { FOR(i, len(used)) if (used[i]) f(key[i], val[i]); } private: u32 cap, mask; vc<u64> key; vc<Val> val; vc<bool> used; u64 hash(u64 x) { static const u64 FIXED_RANDOM = std::chrono::steady_clock::now().time_since_epoch().count(); x += FIXED_RANDOM; x = (x ^ (x >> 30)) * 0xbf58476d1ce4e5b9; x = (x ^ (x >> 27)) * 0x94d049bb133111eb; return (x ^ (x >> 31)) & mask; } void extend() { vc<pair<u64, Val>> dat; dat.reserve(len(used) / 2 - cap); FOR(i, len(used)) { if (used[i]) dat.eb(key[i], val[i]); } build(2 * len(dat)); for (auto& [a, b]: dat) (*this)[a] = b; } }; #line 2 "mod/crt3.hpp" constexpr u32 mod_pow_constexpr(u64 a, u64 n, u32 mod) { a %= mod; u64 res = 1; FOR(32) { if (n & 1) res = res * a % mod; a = a * a % mod, n /= 2; } return res; } template <typename T, u32 p0, u32 p1> T CRT2(u64 a0, u64 a1) { static_assert(p0 < p1); static constexpr u64 x0_1 = mod_pow_constexpr(p0, p1 - 2, p1); u64 c = (a1 - a0 + p1) * x0_1 % p1; return a0 + c * p0; } template <typename T, u32 p0, u32 p1, u32 p2> T CRT3(u64 a0, u64 a1, u64 a2) { static_assert(p0 < p1 && p1 < p2); static constexpr u64 x1 = mod_pow_constexpr(p0, p1 - 2, p1); static constexpr u64 x2 = mod_pow_constexpr(u64(p0) * p1 % p2, p2 - 2, p2); static constexpr u64 p01 = u64(p0) * p1; u64 c = (a1 - a0 + p1) * x1 % p1; u64 ans_1 = a0 + c * p0; c = (a2 - ans_1 % p2 + p2) * x2 % p2; return T(ans_1) + T(c) * T(p01); } template <typename T, u32 p0, u32 p1, u32 p2, u32 p3> T CRT4(u64 a0, u64 a1, u64 a2, u64 a3) { static_assert(p0 < p1 && p1 < p2 && p2 < p3); static constexpr u64 x1 = mod_pow_constexpr(p0, p1 - 2, p1); static constexpr u64 x2 = mod_pow_constexpr(u64(p0) * p1 % p2, p2 - 2, p2); static constexpr u64 x3 = mod_pow_constexpr(u64(p0) * p1 % p3 * p2 % p3, p3 - 2, p3); static constexpr u64 p01 = u64(p0) * p1; u64 c = (a1 - a0 + p1) * x1 % p1; u64 ans_1 = a0 + c * p0; c = (a2 - ans_1 % p2 + p2) * x2 % p2; u128 ans_2 = ans_1 + c * static_cast<u128>(p01); c = (a3 - ans_2 % p3 + p3) * x3 % p3; return T(ans_2) + T(c) * T(p01) * T(p2); } template <typename T, u32 p0, u32 p1, u32 p2, u32 p3, u32 p4> T CRT5(u64 a0, u64 a1, u64 a2, u64 a3, u64 a4) { static_assert(p0 < p1 && p1 < p2 && p2 < p3 && p3 < p4); static constexpr u64 x1 = mod_pow_constexpr(p0, p1 - 2, p1); static constexpr u64 x2 = mod_pow_constexpr(u64(p0) * p1 % p2, p2 - 2, p2); static constexpr u64 x3 = mod_pow_constexpr(u64(p0) * p1 % p3 * p2 % p3, p3 - 2, p3); static constexpr u64 x4 = mod_pow_constexpr(u64(p0) * p1 % p4 * p2 % p4 * p3 % p4, p4 - 2, p4); static constexpr u64 p01 = u64(p0) * p1; static constexpr u64 p23 = u64(p2) * p3; u64 c = (a1 - a0 + p1) * x1 % p1; u64 ans_1 = a0 + c * p0; c = (a2 - ans_1 % p2 + p2) * x2 % p2; u128 ans_2 = ans_1 + c * static_cast<u128>(p01); c = static_cast<u64>(a3 - ans_2 % p3 + p3) * x3 % p3; u128 ans_3 = ans_2 + static_cast<u128>(c * p2) * p01; c = static_cast<u64>(a4 - ans_3 % p4 + p4) * x4 % p4; return T(ans_3) + T(c) * T(p01) * T(p23); } #line 4 "nt/nimber/nimber_log.hpp" // primitive root const Nimber64 root_64 = u64(1) << 32 | 6; const Nimber32 root_32 = 2147483651; const Nimber16 root_16 = 41899; u64 nimber_log(Nimber16 x) { assert(x != 0); u32 ans = u32(37991) * NIM_PRODUCT::L[x.val]; return ans % 65535; } u64 nimber_log(Nimber32 x) { using F = Nimber32; assert(x != 0); static HashMap<u32> MP(330); static F g = 0; if (len(MP) == 0) { // build g = root_32.pow(65535); // 65537 乗根 F gg = g.pow(200); F pow = 1; FOR(i, 330) MP[pow.val] = i, pow *= gg; } u64 a = [&]() -> u32 { F x1 = x.pow(65535); FOR(i, 200) { u32 k = MP.get(x1.val, -1); if (k != u32(-1)) { return (65537 + 200 * k - i) % 65537; } x1 *= g; } assert(0); return 0; }(); u64 b = nimber_log(Nimber16(x.pow(65537).val)); return CRT2<u64, 65535, 65537>(b, a); } u64 nimber_log(Nimber64 x) { using F = Nimber64; assert(x != 0); const u64 mod1 = u32(-1); const u64 mod2 = mod1 + 2; const u32 p1 = 641; const u32 p2 = 6700417; static HashMap<u32> MP1(3400); static HashMap<u32> MP2(641); static F g1, g2; if (len(MP1) == 0) { g1 = root_64.pow(mod1 * p1); // p2 乗根 g2 = root_64.pow(mod1 * p2); // p1 乗根 F gg = g1.pow(2000); F pow = 1; FOR(i, 3400) MP1[pow.val] = i, pow *= gg; pow = 1; FOR(i, 641) MP2[pow.val] = i, pow *= g2; } u64 a1 = [&]() -> u64 { F x1 = x.pow(mod1 * p1); FOR(i, 2000) { u32 k = MP1.get(x1.val, -1); if (k != u32(-1)) { return (p2 + 2000 * k - i) % p2; } x1 *= g1; } assert(0); return 0; }(); u64 a2 = MP2[x.pow(mod1 * p2).val]; u64 b = nimber_log(Nimber32(x.pow(mod2).val)); u64 a = CRT2<u64, p1, p2>(a2, a1); u128 ans = u128(a) * (u64(-1) - mod1) + u128(b) * mod2; if (ans & 1) ans += u64(-1); return (ans / 2) % u64(-1); } // 最小解. ちょうど -1 を false の意味に使える. template <typename F> u64 nimber_log(F x, F y) { u64 X = nimber_log(x), Y = nimber_log(y); // X*n = Y mod (2^64-1) u64 mod = -1; u64 a = X, b = mod; i128 u = 1, v = 0, t; while (b > 0) { t = a / b; swap(a -= t * b, b), swap(u -= t * v, v); } if (Y % a != 0) return -1; if (u < 0) u += mod; return (Y / a) * u % (mod / a); } #line 6 "test/1_mytest/nimber_log.test.cpp" void test_16() { FOR(n, 1, 65536) { Nimber16 x(n); u64 m = nimber_log(x); assert(root_16.pow(m) == x); } } void test_32() { FOR(1 << 15) { Nimber32 x(RNG_64()); if (x == 0) continue; u64 n = nimber_log(x); assert(root_32.pow(n) == x); } } void test_64() { FOR(1 << 15) { Nimber64 x(RNG_64()); if (x == 0) continue; u64 n = nimber_log(x); assert(root_64.pow(n) == x); } FOR(1 << 15) { Nimber64 x(RNG_64()); Nimber64 y(RNG_64()); if (x == 0 || y == 0) continue; u64 n = nimber_log(x, y); if (n != u64(-1)) assert(x.pow(n) == y); } FOR(1 << 15) { Nimber64 x(RNG_64()); u64 n = RNG_64(); Nimber64 y = x.pow(n); u64 m = nimber_log(x, y); assert(m != u64(-1) && x.pow(m) == y); } } void solve() { int a, b; cin >> a >> b; cout << a + b << "\n"; } signed main() { test_16(); test_32(); test_64(); solve(); return 0; }