This documentation is automatically generated by online-judge-tools/verification-helper
#include "nt/nimber/nimber_log.hpp"
#include "nt/nimber/base.hpp"
#include "ds/hashmap.hpp"
#include "mod/crt3.hpp"
// primitive root
const Nimber64 root_64 = u64(1) << 32 | 6;
const Nimber32 root_32 = 2147483651;
const Nimber16 root_16 = 41899;
u64 nimber_log(Nimber16 x) {
assert(x != 0);
u32 ans = u32(37991) * NIM_PRODUCT::L[x.val];
return ans % 65535;
}
u64 nimber_log(Nimber32 x) {
using F = Nimber32;
assert(x != 0);
static HashMap<u32> MP(330);
static F g = 0;
if (len(MP) == 0) {
// build
g = root_32.pow(65535); // 65537 乗根
F gg = g.pow(200);
F pow = 1;
FOR(i, 330) MP[pow.val] = i, pow *= gg;
}
u64 a = [&]() -> u32 {
F x1 = x.pow(65535);
FOR(i, 200) {
u32 k = MP.get(x1.val, -1);
if (k != u32(-1)) { return (65537 + 200 * k - i) % 65537; }
x1 *= g;
}
assert(0);
return 0;
}();
u64 b = nimber_log(Nimber16(x.pow(65537).val));
return CRT2<u64, 65535, 65537>(b, a);
}
u64 nimber_log(Nimber64 x) {
using F = Nimber64;
assert(x != 0);
const u64 mod1 = u32(-1);
const u64 mod2 = mod1 + 2;
const u32 p1 = 641;
const u32 p2 = 6700417;
static HashMap<u32> MP1(3400);
static HashMap<u32> MP2(641);
static F g1, g2;
if (len(MP1) == 0) {
g1 = root_64.pow(mod1 * p1); // p2 乗根
g2 = root_64.pow(mod1 * p2); // p1 乗根
F gg = g1.pow(2000);
F pow = 1;
FOR(i, 3400) MP1[pow.val] = i, pow *= gg;
pow = 1;
FOR(i, 641) MP2[pow.val] = i, pow *= g2;
}
u64 a1 = [&]() -> u64 {
F x1 = x.pow(mod1 * p1);
FOR(i, 2000) {
u32 k = MP1.get(x1.val, -1);
if (k != u32(-1)) { return (p2 + 2000 * k - i) % p2; }
x1 *= g1;
}
assert(0);
return 0;
}();
u64 a2 = MP2[x.pow(mod1 * p2).val];
u64 b = nimber_log(Nimber32(x.pow(mod2).val));
u64 a = CRT2<u64, p1, p2>(a2, a1);
u128 ans = u128(a) * (u64(-1) - mod1) + u128(b) * mod2;
if (ans & 1) ans += u64(-1);
return (ans / 2) % u64(-1);
}
// 最小解. ちょうど -1 を false の意味に使える.
template <typename F>
u64 nimber_log(F x, F y) {
u64 X = nimber_log(x), Y = nimber_log(y);
// X*n = Y mod (2^64-1)
u64 mod = -1;
u64 a = X, b = mod;
i128 u = 1, v = 0, t;
while (b > 0) {
t = a / b;
swap(a -= t * b, b), swap(u -= t * v, v);
}
if (Y % a != 0) return -1;
if (u < 0) u += mod;
return (Y / a) * u % (mod / a);
}
#line 2 "nt/nimber/nimber_impl.hpp"
namespace NIM_PRODUCT {
u16 E[65535 * 2 + 7];
u16 L[65536];
u64 S[4][65536];
u64 SR[4][65536];
u16 p16_15(u16 a, u16 b) { return (a && b ? E[u32(L[a]) + L[b] + 3] : 0); }
u16 p16_15_15(u16 a, u16 b) { return (a && b ? E[u32(L[a]) + L[b] + 6] : 0); }
u16 mul_15(u16 a) { return (a ? E[3 + L[a]] : 0); }
u16 mul_15_15(u16 a) { return (a ? E[6 + L[a]] : 0); }
u32 p32_mul_31(u32 a, u32 b) {
u16 al = a & 65535, ah = a >> 16, bl = b & 65535, bh = b >> 16;
u16 x = p16_15(al, bl);
u16 y = p16_15_15(ah, bh);
u16 z = p16_15(al ^ ah, bl ^ bh);
return u32(y ^ z) << 16 | mul_15(z ^ x);
}
u32 mul_31(u32 a) {
u16 al = a & 65535, ah = a >> 16;
return u32(mul_15(al ^ ah)) << 16 | mul_15_15(ah);
}
u16 prod(u16 a, u16 b) { return (a && b ? E[u32(L[a]) + L[b]] : 0); }
u32 prod(u32 a, u32 b) {
u16 al = a & 65535, ah = a >> 16, bl = b & 65535, bh = b >> 16;
u16 c = prod(al, bl);
return u32(prod(u16(al ^ ah), u16(bl ^ bh)) ^ c) << 16 | (p16_15(ah, bh) ^ c);
}
u64 prod(u64 a, u64 b) {
u32 al = a & 0xffffffff, ah = a >> 32, bl = b & 0xffffffff, bh = b >> 32;
u32 c = prod(al, bl);
return u64(prod(al ^ ah, bl ^ bh) ^ c) << 32 ^ (p32_mul_31(ah, bh) ^ c);
}
u16 square(u16 a) { return S[0][a]; }
u32 square(u32 a) { return S[0][a & 65535] ^ S[1][a >> 16]; }
u64 square(u64 a) { return S[0][a & 65535] ^ S[1][a >> 16 & 65535] ^ S[2][a >> 32 & 65535] ^ S[3][a >> 48 & 65535]; }
u16 sqrt(u16 a) { return SR[0][a]; }
u32 sqrt(u32 a) { return SR[0][a & 65535] ^ SR[1][a >> 16]; }
u64 sqrt(u64 a) { return SR[0][a & 65535] ^ SR[1][a >> 16 & 65535] ^ SR[2][a >> 32 & 65535] ^ SR[3][a >> 48 & 65535]; }
// inv: 2^16 の共役が 2^16+1 であることなどを使う. x^{-1}=y(xy)^{-1} という要領.
u16 inverse(u16 a) { return E[65535 - L[a]]; }
u32 inverse(u32 a) {
if (a < 65536) return inverse(u16(a));
u16 al = a & 65535, ah = a >> 16;
u16 norm = prod(al, al ^ ah) ^ E[L[ah] * 2 + 3];
int k = 65535 - L[norm];
al = (al ^ ah ? E[L[al ^ ah] + k] : 0), ah = E[L[ah] + k];
return al | u32(ah) << 16;
}
u64 inverse(u64 a) {
if (a <= u32(-1)) return inverse(u32(a));
u32 al = a & 0xffffffff, ah = a >> 32;
u32 norm = prod(al, al ^ ah) ^ mul_31(square(ah));
u32 i = inverse(norm);
return prod(al ^ ah, i) | u64(prod(ah, i)) << 32;
}
void __attribute__((constructor)) init_nim_table() {
// 2^16 未満のところについて原始根 10279 での指数対数表を作る
// 2^k との積
u16 tmp[] = {10279, 15417, 35722, 52687, 44124, 62628, 15661, 5686, 3862, 1323, 334, 647, 61560, 20636, 4267, 8445};
u16 nxt[65536];
FOR(i, 16) {
FOR(s, 1 << i) { nxt[s | 1 << i] = nxt[s] ^ tmp[i]; }
}
E[0] = 1;
FOR(i, 65534) E[i + 1] = nxt[E[i]];
memcpy(E + 65535, E, 131070);
memcpy(E + 131070, E, 14);
FOR(i, 65535) L[E[i]] = i;
FOR(t, 4) {
FOR(i, 16) {
int k = 16 * t + i;
u64 X = prod(u64(1) << k, u64(1) << k);
FOR(s, 1 << i) S[t][s | 1 << i] = S[t][s] ^ X;
}
}
FOR(t, 4) {
FOR(i, 16) {
int k = 16 * t + i;
u64 X = u64(1) << k;
FOR(63) X = square(X);
FOR(s, 1 << i) SR[t][s | 1 << i] = SR[t][s] ^ X;
}
}
}
} // namespace NIM_PRODUCT
#line 3 "nt/nimber/base.hpp"
template <typename UINT>
struct Nimber {
using F = Nimber;
UINT val;
constexpr Nimber(UINT x = 0) : val(x) {}
F &operator+=(const F &p) {
val ^= p.val;
return *this;
}
F &operator-=(const F &p) {
val ^= p.val;
return *this;
}
F &operator*=(const F &p) {
val = NIM_PRODUCT::prod(val, p.val);
return *this;
}
F &operator/=(const F &p) {
*this *= p.inverse();
return *this;
}
F operator-() const { return *this; }
F operator+(const F &p) const { return F(*this) += p; }
F operator-(const F &p) const { return F(*this) -= p; }
F operator*(const F &p) const { return F(*this) *= p; }
F operator/(const F &p) const { return F(*this) /= p; }
bool operator==(const F &p) const { return val == p.val; }
bool operator!=(const F &p) const { return val != p.val; }
F inverse() const { return NIM_PRODUCT::inverse(val); }
F pow(u64 n) const {
assert(n >= 0);
UINT ret = 1, mul = val;
while (n > 0) {
if (n & 1) ret = NIM_PRODUCT::prod(ret, mul);
mul = NIM_PRODUCT::square(mul);
n >>= 1;
}
return F(ret);
}
F square() { return F(NIM_PRODUCT::square(val)); }
F sqrt() { return F(NIM_PRODUCT::sqrt(val)); }
};
#ifdef FASTIO
template <typename T>
void rd(Nimber<T> &x) {
fastio::rd(x.val);
}
template <typename T>
void wt(Nimber<T> &x) {
fastio::wt(x.val);
}
#endif
using Nimber16 = Nimber<u16>;
using Nimber32 = Nimber<u32>;
using Nimber64 = Nimber<u64>;
#line 2 "ds/hashmap.hpp"
// u64 -> Val
template <typename Val>
struct HashMap {
// n は入れたいものの個数で ok
HashMap(u32 n = 0) { build(n); }
void build(u32 n) {
u32 k = 8;
while (k < n * 2) k *= 2;
cap = k / 2, mask = k - 1;
key.resize(k), val.resize(k), used.assign(k, 0);
}
// size を保ったまま. size=0 にするときは build すること.
void clear() {
used.assign(len(used), 0);
cap = (mask + 1) / 2;
}
int size() { return len(used) / 2 - cap; }
int index(const u64& k) {
int i = 0;
for (i = hash(k); used[i] && key[i] != k; i = (i + 1) & mask) {}
return i;
}
Val& operator[](const u64& k) {
if (cap == 0) extend();
int i = index(k);
if (!used[i]) { used[i] = 1, key[i] = k, val[i] = Val{}, --cap; }
return val[i];
}
Val get(const u64& k, Val default_value) {
int i = index(k);
return (used[i] ? val[i] : default_value);
}
bool count(const u64& k) {
int i = index(k);
return used[i] && key[i] == k;
}
// f(key, val)
template <typename F>
void enumerate_all(F f) {
FOR(i, len(used)) if (used[i]) f(key[i], val[i]);
}
private:
u32 cap, mask;
vc<u64> key;
vc<Val> val;
vc<bool> used;
u64 hash(u64 x) {
static const u64 FIXED_RANDOM = std::chrono::steady_clock::now().time_since_epoch().count();
x += FIXED_RANDOM;
x = (x ^ (x >> 30)) * 0xbf58476d1ce4e5b9;
x = (x ^ (x >> 27)) * 0x94d049bb133111eb;
return (x ^ (x >> 31)) & mask;
}
void extend() {
vc<pair<u64, Val>> dat;
dat.reserve(len(used) / 2 - cap);
FOR(i, len(used)) {
if (used[i]) dat.eb(key[i], val[i]);
}
build(2 * len(dat));
for (auto& [a, b]: dat) (*this)[a] = b;
}
};
#line 2 "mod/crt3.hpp"
constexpr u32 mod_pow_constexpr(u64 a, u64 n, u32 mod) {
a %= mod;
u64 res = 1;
FOR(32) {
if (n & 1) res = res * a % mod;
a = a * a % mod, n /= 2;
}
return res;
}
template <typename T, u32 p0, u32 p1>
T CRT2(u64 a0, u64 a1) {
static_assert(p0 < p1);
static constexpr u64 x0_1 = mod_pow_constexpr(p0, p1 - 2, p1);
u64 c = (a1 - a0 + p1) * x0_1 % p1;
return a0 + c * p0;
}
template <typename T, u32 p0, u32 p1, u32 p2>
T CRT3(u64 a0, u64 a1, u64 a2) {
static_assert(p0 < p1 && p1 < p2);
static constexpr u64 x1 = mod_pow_constexpr(p0, p1 - 2, p1);
static constexpr u64 x2 = mod_pow_constexpr(u64(p0) * p1 % p2, p2 - 2, p2);
static constexpr u64 p01 = u64(p0) * p1;
u64 c = (a1 - a0 + p1) * x1 % p1;
u64 ans_1 = a0 + c * p0;
c = (a2 - ans_1 % p2 + p2) * x2 % p2;
return T(ans_1) + T(c) * T(p01);
}
template <typename T, u32 p0, u32 p1, u32 p2, u32 p3>
T CRT4(u64 a0, u64 a1, u64 a2, u64 a3) {
static_assert(p0 < p1 && p1 < p2 && p2 < p3);
static constexpr u64 x1 = mod_pow_constexpr(p0, p1 - 2, p1);
static constexpr u64 x2 = mod_pow_constexpr(u64(p0) * p1 % p2, p2 - 2, p2);
static constexpr u64 x3 = mod_pow_constexpr(u64(p0) * p1 % p3 * p2 % p3, p3 - 2, p3);
static constexpr u64 p01 = u64(p0) * p1;
u64 c = (a1 - a0 + p1) * x1 % p1;
u64 ans_1 = a0 + c * p0;
c = (a2 - ans_1 % p2 + p2) * x2 % p2;
u128 ans_2 = ans_1 + c * static_cast<u128>(p01);
c = (a3 - ans_2 % p3 + p3) * x3 % p3;
return T(ans_2) + T(c) * T(p01) * T(p2);
}
template <typename T, u32 p0, u32 p1, u32 p2, u32 p3, u32 p4>
T CRT5(u64 a0, u64 a1, u64 a2, u64 a3, u64 a4) {
static_assert(p0 < p1 && p1 < p2 && p2 < p3 && p3 < p4);
static constexpr u64 x1 = mod_pow_constexpr(p0, p1 - 2, p1);
static constexpr u64 x2 = mod_pow_constexpr(u64(p0) * p1 % p2, p2 - 2, p2);
static constexpr u64 x3 = mod_pow_constexpr(u64(p0) * p1 % p3 * p2 % p3, p3 - 2, p3);
static constexpr u64 x4 = mod_pow_constexpr(u64(p0) * p1 % p4 * p2 % p4 * p3 % p4, p4 - 2, p4);
static constexpr u64 p01 = u64(p0) * p1;
static constexpr u64 p23 = u64(p2) * p3;
u64 c = (a1 - a0 + p1) * x1 % p1;
u64 ans_1 = a0 + c * p0;
c = (a2 - ans_1 % p2 + p2) * x2 % p2;
u128 ans_2 = ans_1 + c * static_cast<u128>(p01);
c = static_cast<u64>(a3 - ans_2 % p3 + p3) * x3 % p3;
u128 ans_3 = ans_2 + static_cast<u128>(c * p2) * p01;
c = static_cast<u64>(a4 - ans_3 % p4 + p4) * x4 % p4;
return T(ans_3) + T(c) * T(p01) * T(p23);
}
#line 4 "nt/nimber/nimber_log.hpp"
// primitive root
const Nimber64 root_64 = u64(1) << 32 | 6;
const Nimber32 root_32 = 2147483651;
const Nimber16 root_16 = 41899;
u64 nimber_log(Nimber16 x) {
assert(x != 0);
u32 ans = u32(37991) * NIM_PRODUCT::L[x.val];
return ans % 65535;
}
u64 nimber_log(Nimber32 x) {
using F = Nimber32;
assert(x != 0);
static HashMap<u32> MP(330);
static F g = 0;
if (len(MP) == 0) {
// build
g = root_32.pow(65535); // 65537 乗根
F gg = g.pow(200);
F pow = 1;
FOR(i, 330) MP[pow.val] = i, pow *= gg;
}
u64 a = [&]() -> u32 {
F x1 = x.pow(65535);
FOR(i, 200) {
u32 k = MP.get(x1.val, -1);
if (k != u32(-1)) { return (65537 + 200 * k - i) % 65537; }
x1 *= g;
}
assert(0);
return 0;
}();
u64 b = nimber_log(Nimber16(x.pow(65537).val));
return CRT2<u64, 65535, 65537>(b, a);
}
u64 nimber_log(Nimber64 x) {
using F = Nimber64;
assert(x != 0);
const u64 mod1 = u32(-1);
const u64 mod2 = mod1 + 2;
const u32 p1 = 641;
const u32 p2 = 6700417;
static HashMap<u32> MP1(3400);
static HashMap<u32> MP2(641);
static F g1, g2;
if (len(MP1) == 0) {
g1 = root_64.pow(mod1 * p1); // p2 乗根
g2 = root_64.pow(mod1 * p2); // p1 乗根
F gg = g1.pow(2000);
F pow = 1;
FOR(i, 3400) MP1[pow.val] = i, pow *= gg;
pow = 1;
FOR(i, 641) MP2[pow.val] = i, pow *= g2;
}
u64 a1 = [&]() -> u64 {
F x1 = x.pow(mod1 * p1);
FOR(i, 2000) {
u32 k = MP1.get(x1.val, -1);
if (k != u32(-1)) { return (p2 + 2000 * k - i) % p2; }
x1 *= g1;
}
assert(0);
return 0;
}();
u64 a2 = MP2[x.pow(mod1 * p2).val];
u64 b = nimber_log(Nimber32(x.pow(mod2).val));
u64 a = CRT2<u64, p1, p2>(a2, a1);
u128 ans = u128(a) * (u64(-1) - mod1) + u128(b) * mod2;
if (ans & 1) ans += u64(-1);
return (ans / 2) % u64(-1);
}
// 最小解. ちょうど -1 を false の意味に使える.
template <typename F>
u64 nimber_log(F x, F y) {
u64 X = nimber_log(x), Y = nimber_log(y);
// X*n = Y mod (2^64-1)
u64 mod = -1;
u64 a = X, b = mod;
i128 u = 1, v = 0, t;
while (b > 0) {
t = a / b;
swap(a -= t * b, b), swap(u -= t * v, v);
}
if (Y % a != 0) return -1;
if (u < 0) u += mod;
return (Y / a) * u % (mod / a);
}