This documentation is automatically generated by online-judge-tools/verification-helper
#define PROBLEM "https://judge.yosupo.jp/problem/aplusb"
#include "my_template.hpp"
#include "ds/kdtree/kdtree_acted_monoid.hpp"
#include "alg/acted_monoid/summax_add.hpp"
#include "random/base.hpp"
void test() {
ll LIM = RNG(1, 100);
int N = RNG(1, 100);
using AM = ActedMonoid_SumMax_Add<int>;
using MX = AM::Monoid_X;
vc<int> X, Y, W;
vc<typename MX::value_type> val;
FOR(i, N) {
int x = RNG(0, LIM);
int y = RNG(0, LIM);
int v = RNG(0, 100);
X.eb(x), Y.eb(y), val.eb(v, v);
}
KDTree_ActedMonoid<AM, int> KDT(X, Y, val);
int Q = 100;
FOR(Q) {
int t = RNG(0, 4);
int xl = RNG(0, LIM), xr = RNG(0, LIM), yl = RNG(0, LIM), yr = RNG(0, LIM);
if (xl > xr) swap(xl, xr);
if (yl > yr) swap(yl, yr);
if (t == 0) {
// multiply
int k = RNG(0, N);
int a = RNG(0, 100);
int b = RNG(0, 100);
KDT.multiply(k, {a, b});
val[k].fi += a;
chmax(val[k].se, b);
}
if (t == 1) {
// prod
int sm = 0, mx = MX::unit().se;
FOR(k, N) {
if (xl <= X[k] && X[k] < xr && yl <= Y[k] && Y[k] < yr) { sm += val[k].fi, chmax(mx, val[k].se); }
}
auto res = KDT.prod(xl, xr, yl, yr);
assert(res.fi == sm && res.se == mx);
}
if (t == 2) {
// prod all
int sm = 0, mx = MX::unit().se;
FOR(k, N) { sm += val[k].fi, chmax(mx, val[k].se); }
auto res = KDT.prod_all();
assert(res.fi == sm && res.se == mx);
}
if (t == 3) {
// apply
int a = RNG(0, 10);
FOR(k, N) {
if (xl <= X[k] && X[k] < xr && yl <= Y[k] && Y[k] < yr) { val[k].fi += a, val[k].se += a; }
}
KDT.apply(xl, xr, yl, yr, a);
}
}
}
void solve() {
int a, b;
cin >> a >> b;
cout << a + b << "\n";
}
signed main() {
FOR(100) test();
solve();
return 0;
}
#line 1 "test/1_mytest/kdtree_am.test.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/aplusb"
#line 1 "my_template.hpp"
#if defined(LOCAL)
#include <my_template_compiled.hpp>
#else
// https://codeforces.com/blog/entry/96344
// https://codeforces.com/blog/entry/126772?#comment-1154880
#include <bits/allocator.h>
#pragma GCC optimize("Ofast,unroll-loops")
#pragma GCC target("avx2,popcnt")
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using u8 = uint8_t;
using u16 = uint16_t;
using u32 = uint32_t;
using u64 = uint64_t;
using i128 = __int128;
using u128 = unsigned __int128;
using f128 = __float128;
template <class T>
constexpr T infty = 0;
template <>
constexpr int infty<int> = 1'010'000'000;
template <>
constexpr ll infty<ll> = 2'020'000'000'000'000'000;
template <>
constexpr u32 infty<u32> = infty<int>;
template <>
constexpr u64 infty<u64> = infty<ll>;
template <>
constexpr i128 infty<i128> = i128(infty<ll>) * 2'000'000'000'000'000'000;
template <>
constexpr double infty<double> = infty<ll>;
template <>
constexpr long double infty<long double> = infty<ll>;
using pi = pair<ll, ll>;
using vi = vector<ll>;
template <class T>
using vc = vector<T>;
template <class T>
using vvc = vector<vc<T>>;
template <class T>
using vvvc = vector<vvc<T>>;
template <class T>
using vvvvc = vector<vvvc<T>>;
template <class T>
using vvvvvc = vector<vvvvc<T>>;
template <class T>
using pq = priority_queue<T>;
template <class T>
using pqg = priority_queue<T, vector<T>, greater<T>>;
#define vv(type, name, h, ...) vector<vector<type>> name(h, vector<type>(__VA_ARGS__))
#define vvv(type, name, h, w, ...) vector<vector<vector<type>>> name(h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))
#define vvvv(type, name, a, b, c, ...) \
vector<vector<vector<vector<type>>>> name(a, vector<vector<vector<type>>>(b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))
// https://trap.jp/post/1224/
#define FOR1(a) for (ll _ = 0; _ < ll(a); ++_)
#define FOR2(i, a) for (ll i = 0; i < ll(a); ++i)
#define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i)
#define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c))
#define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i)
#define overload4(a, b, c, d, e, ...) e
#define overload3(a, b, c, d, ...) d
#define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__)
#define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__)
#define all(x) x.begin(), x.end()
#define len(x) ll(x.size())
#define elif else if
#define eb emplace_back
#define mp make_pair
#define mt make_tuple
#define fi first
#define se second
#define stoi stoll
int popcnt(int x) { return __builtin_popcount(x); }
int popcnt(u32 x) { return __builtin_popcount(x); }
int popcnt(ll x) { return __builtin_popcountll(x); }
int popcnt(u64 x) { return __builtin_popcountll(x); }
int popcnt_sgn(int x) { return (__builtin_parity(unsigned(x)) & 1 ? -1 : 1); }
int popcnt_sgn(u32 x) { return (__builtin_parity(x) & 1 ? -1 : 1); }
int popcnt_sgn(ll x) { return (__builtin_parityll(x) & 1 ? -1 : 1); }
int popcnt_sgn(u64 x) { return (__builtin_parityll(x) & 1 ? -1 : 1); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2)
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2)
int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
template <typename T>
T kth_bit(int k) {
return T(1) << k;
}
template <typename T>
bool has_kth_bit(T x, int k) {
return x >> k & 1;
}
template <typename UINT>
struct all_bit {
struct iter {
UINT s;
iter(UINT s) : s(s) {}
int operator*() const { return lowbit(s); }
iter &operator++() {
s &= s - 1;
return *this;
}
bool operator!=(const iter) const { return s != 0; }
};
UINT s;
all_bit(UINT s) : s(s) {}
iter begin() const { return iter(s); }
iter end() const { return iter(0); }
};
template <typename UINT>
struct all_subset {
static_assert(is_unsigned<UINT>::value);
struct iter {
UINT s, t;
bool ed;
iter(UINT s) : s(s), t(s), ed(0) {}
int operator*() const { return s ^ t; }
iter &operator++() {
(t == 0 ? ed = 1 : t = (t - 1) & s);
return *this;
}
bool operator!=(const iter) const { return !ed; }
};
UINT s;
all_subset(UINT s) : s(s) {}
iter begin() const { return iter(s); }
iter end() const { return iter(0); }
};
template <typename T>
T floor(T a, T b) {
return a / b - (a % b && (a ^ b) < 0);
}
template <typename T>
T ceil(T x, T y) {
return floor(x + y - 1, y);
}
template <typename T>
T bmod(T x, T y) {
return x - y * floor(x, y);
}
template <typename T>
pair<T, T> divmod(T x, T y) {
T q = floor(x, y);
return {q, x - q * y};
}
template <typename T, typename U>
T SUM(const vector<U> &A) {
T sm = 0;
for (auto &&a: A) sm += a;
return sm;
}
#define MIN(v) *min_element(all(v))
#define MAX(v) *max_element(all(v))
#define LB(c, x) distance((c).begin(), lower_bound(all(c), (x)))
#define UB(c, x) distance((c).begin(), upper_bound(all(c), (x)))
#define UNIQUE(x) sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit()
template <typename T>
T POP(deque<T> &que) {
T a = que.front();
que.pop_front();
return a;
}
template <typename T>
T POP(pq<T> &que) {
T a = que.top();
que.pop();
return a;
}
template <typename T>
T POP(pqg<T> &que) {
T a = que.top();
que.pop();
return a;
}
template <typename T>
T POP(vc<T> &que) {
T a = que.back();
que.pop_back();
return a;
}
template <typename F>
ll binary_search(F check, ll ok, ll ng, bool check_ok = true) {
if (check_ok) assert(check(ok));
while (abs(ok - ng) > 1) {
auto x = (ng + ok) / 2;
(check(x) ? ok : ng) = x;
}
return ok;
}
template <typename F>
double binary_search_real(F check, double ok, double ng, int iter = 100) {
FOR(iter) {
double x = (ok + ng) / 2;
(check(x) ? ok : ng) = x;
}
return (ok + ng) / 2;
}
template <class T, class S>
inline bool chmax(T &a, const S &b) {
return (a < b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chmin(T &a, const S &b) {
return (a > b ? a = b, 1 : 0);
}
// ? は -1
vc<int> s_to_vi(const string &S, char first_char) {
vc<int> A(S.size());
FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); }
return A;
}
template <typename T, typename U>
vector<T> cumsum(vector<U> &A, int off = 1) {
int N = A.size();
vector<T> B(N + 1);
FOR(i, N) { B[i + 1] = B[i] + A[i]; }
if (off == 0) B.erase(B.begin());
return B;
}
// stable sort
template <typename T>
vector<int> argsort(const vector<T> &A) {
vector<int> ids(len(A));
iota(all(ids), 0);
sort(all(ids), [&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); });
return ids;
}
// A[I[0]], A[I[1]], ...
template <typename T>
vc<T> rearrange(const vc<T> &A, const vc<int> &I) {
vc<T> B(len(I));
FOR(i, len(I)) B[i] = A[I[i]];
return B;
}
template <typename T, typename... Vectors>
void concat(vc<T> &first, const Vectors &... others) {
vc<T> &res = first;
(res.insert(res.end(), others.begin(), others.end()), ...);
}
#endif
#line 3 "test/1_mytest/kdtree_am.test.cpp"
#line 1 "ds/kdtree/kdtree_acted_monoid.hpp"
template <class ActedMonoid, typename XY>
struct KDTree_ActedMonoid {
using AM = ActedMonoid;
using MX = typename AM::Monoid_X;
using MA = typename AM::Monoid_A;
using X = typename AM::X;
using A = typename AM::A;
static_assert(MX::commute);
// 小数も考慮すると、閉で持つ設計方針になる。ただし、クエリはいつもの半開を使う
vc<tuple<XY, XY, XY, XY>> closed_range;
vc<X> dat;
vc<A> lazy;
vc<int> size;
vc<int> pos; // raw data -> index
int n, log;
KDTree_ActedMonoid(vc<XY> xs, vc<XY> ys, vc<X> vs) : n(len(xs)) {
assert(n > 0);
log = 0;
while ((1 << log) < n) ++log;
dat.resize(1 << (log + 1));
lazy.assign(1 << log, MA::unit());
closed_range.assign(1 << (log + 1), {infty<XY>, -infty<XY>, infty<XY>, -infty<XY>});
size.resize(1 << (log + 1));
vc<int> ids(n);
pos.resize(n);
FOR(i, n) ids[i] = i;
build(1, xs, ys, vs, ids);
}
void set(int i, const X& v) {
i = pos[i];
for (int k = log; k >= 1; k--) { push(i >> k); }
dat[i] = v;
while (i > 1) i /= 2, dat[i] = MX::op(dat[2 * i], dat[2 * i + 1]);
}
void multiply(int i, const X& v) {
i = pos[i];
for (int k = log; k >= 1; k--) { push(i >> k); }
dat[i] = MX::op(dat[i], v);
while (i > 1) i /= 2, dat[i] = MX::op(dat[2 * i], dat[2 * i + 1]);
}
// [xl, xr) x [yl, yr)
X prod(XY xl, XY xr, XY yl, XY yr) {
assert(xl <= xr && yl <= yr);
return prod_rec(1, xl, xr, yl, yr);
}
X prod_all() { return dat[1]; }
// [xl, xr) x [yl, yr)
void apply(XY xl, XY xr, XY yl, XY yr, A a) {
assert(xl <= xr && yl <= yr);
return apply_rec(1, xl, xr, yl, yr, a);
}
private:
void build(int idx, vc<XY> xs, vc<XY> ys, vc<X> vs, vc<int> ids, bool divx = true) {
int n = len(xs);
size[idx] = n;
auto& [xmin, xmax, ymin, ymax] = closed_range[idx];
xmin = ymin = infty<XY>;
xmax = ymax = -infty<XY>;
FOR(i, n) {
auto x = xs[i], y = ys[i];
chmin(xmin, x), chmax(xmax, x), chmin(ymin, y), chmax(ymax, y);
}
if (n == 1) {
dat[idx] = vs[0];
pos[ids[0]] = idx;
return;
}
int m = n / 2;
vc<int> I(n);
iota(all(I), 0);
if (divx) {
nth_element(I.begin(), I.begin() + m, I.end(), [xs](int i, int j) { return xs[i] < xs[j]; });
} else {
nth_element(I.begin(), I.begin() + m, I.end(), [ys](int i, int j) { return ys[i] < ys[j]; });
}
xs = rearrange(xs, I), ys = rearrange(ys, I), vs = rearrange(vs, I), ids = rearrange(ids, I);
build(2 * idx + 0, {xs.begin(), xs.begin() + m}, {ys.begin(), ys.begin() + m}, {vs.begin(), vs.begin() + m}, {ids.begin(), ids.begin() + m}, !divx);
build(2 * idx + 1, {xs.begin() + m, xs.end()}, {ys.begin() + m, ys.end()}, {vs.begin() + m, vs.end()}, {ids.begin() + m, ids.end()}, !divx);
dat[idx] = MX::op(dat[2 * idx + 0], dat[2 * idx + 1]);
}
inline bool isin(XY x, XY y, int idx) {
auto& [xmin, xmax, ymin, ymax] = closed_range[idx];
return (xmin <= x && x <= xmax && ymin <= y && y <= ymax);
}
void apply_at(int idx, A a) {
dat[idx] = AM::act(dat[idx], a, size[idx]);
if (idx < (1 << log)) lazy[idx] = MA::op(lazy[idx], a);
}
void push(int idx) {
if (lazy[idx] == MA::unit()) return;
apply_at(2 * idx + 0, lazy[idx]), apply_at(2 * idx + 1, lazy[idx]);
lazy[idx] = MA::unit();
}
X prod_rec(int idx, XY x1, XY x2, XY y1, XY y2) {
if (idx >= len(closed_range)) return MX::unit();
auto& [xmin, xmax, ymin, ymax] = closed_range[idx];
if (xmin > xmax) return MX::unit();
if (x2 <= xmin || xmax < x1) return MX::unit();
if (y2 <= ymin || ymax < y1) return MX::unit();
if (x1 <= xmin && xmax < x2 && y1 <= ymin && ymax < y2) { return dat[idx]; }
push(idx);
return MX::op(prod_rec(2 * idx + 0, x1, x2, y1, y2), prod_rec(2 * idx + 1, x1, x2, y1, y2));
}
void apply_rec(int idx, XY x1, XY x2, XY y1, XY y2, A a) {
if (idx >= len(closed_range)) return;
auto& [xmin, xmax, ymin, ymax] = closed_range[idx];
if (xmin > xmax) return;
if (x2 <= xmin || xmax < x1) return;
if (y2 <= ymin || ymax < y1) return;
if (x1 <= xmin && xmax < x2 && y1 <= ymin && ymax < y2) { return apply_at(idx, a); }
push(idx);
apply_rec(2 * idx + 0, x1, x2, y1, y2, a);
apply_rec(2 * idx + 1, x1, x2, y1, y2, a);
dat[idx] = MX::op(dat[2 * idx + 0], dat[2 * idx + 1]);
}
};
#line 2 "alg/monoid/summax.hpp"
template <typename E>
struct Monoid_SumMax {
using value_type = pair<E, E>;
using X = value_type;
static X op(X x, X y) { return {x.fi + y.fi, max(x.se, y.se)}; }
static X from_element(E e) { return {e, e}; }
static constexpr X unit() { return {E(0), -infty<E>}; }
static constexpr bool commute = 1;
};
#line 2 "alg/monoid/add.hpp"
template <typename E>
struct Monoid_Add {
using X = E;
using value_type = X;
static constexpr X op(const X &x, const X &y) noexcept { return x + y; }
static constexpr X inverse(const X &x) noexcept { return -x; }
static constexpr X power(const X &x, ll n) noexcept { return X(n) * x; }
static constexpr X unit() { return X(0); }
static constexpr bool commute = true;
};
#line 3 "alg/acted_monoid/summax_add.hpp"
template <typename E>
struct ActedMonoid_SumMax_Add {
using Monoid_X = Monoid_SumMax<E>;
using Monoid_A = Monoid_Add<E>;
using X = typename Monoid_X::value_type;
using A = typename Monoid_A::value_type;
static constexpr X act(const X& x, const A& a, const ll& size) {
auto [xs, xm] = x;
xm = (xm == -infty<E> ? xm : xm + a);
return {xs + E(size) * a, xm};
}
};
#line 2 "random/base.hpp"
u64 RNG_64() {
static u64 x_ = u64(chrono::duration_cast<chrono::nanoseconds>(chrono::high_resolution_clock::now().time_since_epoch()).count()) * 10150724397891781847ULL;
x_ ^= x_ << 7;
return x_ ^= x_ >> 9;
}
u64 RNG(u64 lim) { return RNG_64() % lim; }
ll RNG(ll l, ll r) { return l + RNG_64() % (r - l); }
#line 7 "test/1_mytest/kdtree_am.test.cpp"
void test() {
ll LIM = RNG(1, 100);
int N = RNG(1, 100);
using AM = ActedMonoid_SumMax_Add<int>;
using MX = AM::Monoid_X;
vc<int> X, Y, W;
vc<typename MX::value_type> val;
FOR(i, N) {
int x = RNG(0, LIM);
int y = RNG(0, LIM);
int v = RNG(0, 100);
X.eb(x), Y.eb(y), val.eb(v, v);
}
KDTree_ActedMonoid<AM, int> KDT(X, Y, val);
int Q = 100;
FOR(Q) {
int t = RNG(0, 4);
int xl = RNG(0, LIM), xr = RNG(0, LIM), yl = RNG(0, LIM), yr = RNG(0, LIM);
if (xl > xr) swap(xl, xr);
if (yl > yr) swap(yl, yr);
if (t == 0) {
// multiply
int k = RNG(0, N);
int a = RNG(0, 100);
int b = RNG(0, 100);
KDT.multiply(k, {a, b});
val[k].fi += a;
chmax(val[k].se, b);
}
if (t == 1) {
// prod
int sm = 0, mx = MX::unit().se;
FOR(k, N) {
if (xl <= X[k] && X[k] < xr && yl <= Y[k] && Y[k] < yr) { sm += val[k].fi, chmax(mx, val[k].se); }
}
auto res = KDT.prod(xl, xr, yl, yr);
assert(res.fi == sm && res.se == mx);
}
if (t == 2) {
// prod all
int sm = 0, mx = MX::unit().se;
FOR(k, N) { sm += val[k].fi, chmax(mx, val[k].se); }
auto res = KDT.prod_all();
assert(res.fi == sm && res.se == mx);
}
if (t == 3) {
// apply
int a = RNG(0, 10);
FOR(k, N) {
if (xl <= X[k] && X[k] < xr && yl <= Y[k] && Y[k] < yr) { val[k].fi += a, val[k].se += a; }
}
KDT.apply(xl, xr, yl, yr, a);
}
}
}
void solve() {
int a, b;
cin >> a >> b;
cout << a + b << "\n";
}
signed main() {
FOR(100) test();
solve();
return 0;
}