This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub maspypy/library
#define PROBLEM "https://judge.yosupo.jp/problem/aplusb" #include "my_template.hpp" #include "ds/kdtree/kdtree_acted_monoid.hpp" #include "alg/acted_monoid/summax_add.hpp" #include "random/base.hpp" void test() { ll LIM = RNG(1, 100); int N = RNG(1, 100); using AM = ActedMonoid_SumMax_Add<int>; using MX = AM::Monoid_X; vc<int> X, Y, W; vc<typename MX::value_type> val; FOR(i, N) { int x = RNG(0, LIM); int y = RNG(0, LIM); int v = RNG(0, 100); X.eb(x), Y.eb(y), val.eb(v, v); } KDTree_ActedMonoid<AM, int> KDT(X, Y, val); int Q = 100; FOR(Q) { int t = RNG(0, 4); int xl = RNG(0, LIM), xr = RNG(0, LIM), yl = RNG(0, LIM), yr = RNG(0, LIM); if (xl > xr) swap(xl, xr); if (yl > yr) swap(yl, yr); if (t == 0) { // multiply int k = RNG(0, N); int a = RNG(0, 100); int b = RNG(0, 100); KDT.multiply(k, {a, b}); val[k].fi += a; chmax(val[k].se, b); } if (t == 1) { // prod int sm = 0, mx = MX::unit().se; FOR(k, N) { if (xl <= X[k] && X[k] < xr && yl <= Y[k] && Y[k] < yr) { sm += val[k].fi, chmax(mx, val[k].se); } } auto res = KDT.prod(xl, xr, yl, yr); assert(res.fi == sm && res.se == mx); } if (t == 2) { // prod all int sm = 0, mx = MX::unit().se; FOR(k, N) { sm += val[k].fi, chmax(mx, val[k].se); } auto res = KDT.prod_all(); assert(res.fi == sm && res.se == mx); } if (t == 3) { // apply int a = RNG(0, 10); FOR(k, N) { if (xl <= X[k] && X[k] < xr && yl <= Y[k] && Y[k] < yr) { val[k].fi += a, val[k].se += a; } } KDT.apply(xl, xr, yl, yr, a); } } } void solve() { int a, b; cin >> a >> b; cout << a + b << "\n"; } signed main() { FOR(100) test(); solve(); return 0; }
#line 1 "test/1_mytest/kdtree_am.test.cpp" #define PROBLEM "https://judge.yosupo.jp/problem/aplusb" #line 1 "my_template.hpp" #if defined(LOCAL) #include <my_template_compiled.hpp> #else // https://codeforces.com/blog/entry/96344 #pragma GCC optimize("Ofast,unroll-loops") // いまの CF だとこれ入れると動かない? // #pragma GCC target("avx2,popcnt") #include <bits/stdc++.h> using namespace std; using ll = long long; using u8 = uint8_t; using u16 = uint16_t; using u32 = uint32_t; using u64 = uint64_t; using i128 = __int128; using u128 = unsigned __int128; using f128 = __float128; template <class T> constexpr T infty = 0; template <> constexpr int infty<int> = 1'010'000'000; template <> constexpr ll infty<ll> = 2'020'000'000'000'000'000; template <> constexpr u32 infty<u32> = infty<int>; template <> constexpr u64 infty<u64> = infty<ll>; template <> constexpr i128 infty<i128> = i128(infty<ll>) * 2'000'000'000'000'000'000; template <> constexpr double infty<double> = infty<ll>; template <> constexpr long double infty<long double> = infty<ll>; using pi = pair<ll, ll>; using vi = vector<ll>; template <class T> using vc = vector<T>; template <class T> using vvc = vector<vc<T>>; template <class T> using vvvc = vector<vvc<T>>; template <class T> using vvvvc = vector<vvvc<T>>; template <class T> using vvvvvc = vector<vvvvc<T>>; template <class T> using pq = priority_queue<T>; template <class T> using pqg = priority_queue<T, vector<T>, greater<T>>; #define vv(type, name, h, ...) vector<vector<type>> name(h, vector<type>(__VA_ARGS__)) #define vvv(type, name, h, w, ...) vector<vector<vector<type>>> name(h, vector<vector<type>>(w, vector<type>(__VA_ARGS__))) #define vvvv(type, name, a, b, c, ...) \ vector<vector<vector<vector<type>>>> name(a, vector<vector<vector<type>>>(b, vector<vector<type>>(c, vector<type>(__VA_ARGS__)))) // https://trap.jp/post/1224/ #define FOR1(a) for (ll _ = 0; _ < ll(a); ++_) #define FOR2(i, a) for (ll i = 0; i < ll(a); ++i) #define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i) #define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c)) #define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i) #define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i) #define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i) #define overload4(a, b, c, d, e, ...) e #define overload3(a, b, c, d, ...) d #define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__) #define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__) #define all(x) x.begin(), x.end() #define len(x) ll(x.size()) #define elif else if #define eb emplace_back #define mp make_pair #define mt make_tuple #define fi first #define se second #define stoi stoll int popcnt(int x) { return __builtin_popcount(x); } int popcnt(u32 x) { return __builtin_popcount(x); } int popcnt(ll x) { return __builtin_popcountll(x); } int popcnt(u64 x) { return __builtin_popcountll(x); } int popcnt_sgn(int x) { return (__builtin_parity(unsigned(x)) & 1 ? -1 : 1); } int popcnt_sgn(u32 x) { return (__builtin_parity(x) & 1 ? -1 : 1); } int popcnt_sgn(ll x) { return (__builtin_parityll(x) & 1 ? -1 : 1); } int popcnt_sgn(u64 x) { return (__builtin_parityll(x) & 1 ? -1 : 1); } // (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2) int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); } int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); } int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); } int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); } // (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2) int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); } int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); } int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); } int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); } template <typename T> T kth_bit(int k) { return T(1) << k; } template <typename T> bool has_kth_bit(T x, int k) { return x >> k & 1; } template <typename UINT> struct all_bit { struct iter { UINT s; iter(UINT s) : s(s) {} int operator*() const { return lowbit(s); } iter &operator++() { s &= s - 1; return *this; } bool operator!=(const iter) const { return s != 0; } }; UINT s; all_bit(UINT s) : s(s) {} iter begin() const { return iter(s); } iter end() const { return iter(0); } }; template <typename UINT> struct all_subset { static_assert(is_unsigned<UINT>::value); struct iter { UINT s, t; bool ed; iter(UINT s) : s(s), t(s), ed(0) {} int operator*() const { return s ^ t; } iter &operator++() { (t == 0 ? ed = 1 : t = (t - 1) & s); return *this; } bool operator!=(const iter) const { return !ed; } }; UINT s; all_subset(UINT s) : s(s) {} iter begin() const { return iter(s); } iter end() const { return iter(0); } }; template <typename T> T floor(T a, T b) { return a / b - (a % b && (a ^ b) < 0); } template <typename T> T ceil(T x, T y) { return floor(x + y - 1, y); } template <typename T> T bmod(T x, T y) { return x - y * floor(x, y); } template <typename T> pair<T, T> divmod(T x, T y) { T q = floor(x, y); return {q, x - q * y}; } template <typename T, typename U> T SUM(const vector<U> &A) { T sm = 0; for (auto &&a: A) sm += a; return sm; } #define MIN(v) *min_element(all(v)) #define MAX(v) *max_element(all(v)) #define LB(c, x) distance((c).begin(), lower_bound(all(c), (x))) #define UB(c, x) distance((c).begin(), upper_bound(all(c), (x))) #define UNIQUE(x) sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit() template <typename T> T POP(deque<T> &que) { T a = que.front(); que.pop_front(); return a; } template <typename T> T POP(pq<T> &que) { T a = que.top(); que.pop(); return a; } template <typename T> T POP(pqg<T> &que) { T a = que.top(); que.pop(); return a; } template <typename T> T POP(vc<T> &que) { T a = que.back(); que.pop_back(); return a; } template <typename F> ll binary_search(F check, ll ok, ll ng, bool check_ok = true) { if (check_ok) assert(check(ok)); while (abs(ok - ng) > 1) { auto x = (ng + ok) / 2; (check(x) ? ok : ng) = x; } return ok; } template <typename F> double binary_search_real(F check, double ok, double ng, int iter = 100) { FOR(iter) { double x = (ok + ng) / 2; (check(x) ? ok : ng) = x; } return (ok + ng) / 2; } template <class T, class S> inline bool chmax(T &a, const S &b) { return (a < b ? a = b, 1 : 0); } template <class T, class S> inline bool chmin(T &a, const S &b) { return (a > b ? a = b, 1 : 0); } // ? は -1 vc<int> s_to_vi(const string &S, char first_char) { vc<int> A(S.size()); FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); } return A; } template <typename T, typename U> vector<T> cumsum(vector<U> &A, int off = 1) { int N = A.size(); vector<T> B(N + 1); FOR(i, N) { B[i + 1] = B[i] + A[i]; } if (off == 0) B.erase(B.begin()); return B; } // stable sort template <typename T> vector<int> argsort(const vector<T> &A) { vector<int> ids(len(A)); iota(all(ids), 0); sort(all(ids), [&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); }); return ids; } // A[I[0]], A[I[1]], ... template <typename T> vc<T> rearrange(const vc<T> &A, const vc<int> &I) { vc<T> B(len(I)); FOR(i, len(I)) B[i] = A[I[i]]; return B; } template <typename T, typename... Vectors> void concat(vc<T> &first, const Vectors &... others) { vc<T> &res = first; (res.insert(res.end(), others.begin(), others.end()), ...); } #endif #line 3 "test/1_mytest/kdtree_am.test.cpp" #line 1 "ds/kdtree/kdtree_acted_monoid.hpp" template <class ActedMonoid, typename XY> struct KDTree_ActedMonoid { using AM = ActedMonoid; using MX = typename AM::Monoid_X; using MA = typename AM::Monoid_A; using X = typename AM::X; using A = typename AM::A; static_assert(MX::commute); // 小数も考慮すると、閉で持つ設計方針になる。ただし、クエリはいつもの半開を使う vc<tuple<XY, XY, XY, XY>> closed_range; vc<X> dat; vc<A> lazy; vc<int> size; vc<int> pos; // raw data -> index int n, log; KDTree_ActedMonoid(vc<XY> xs, vc<XY> ys, vc<X> vs) : n(len(xs)) { assert(n > 0); log = 0; while ((1 << log) < n) ++log; dat.resize(1 << (log + 1)); lazy.assign(1 << log, MA::unit()); closed_range.assign(1 << (log + 1), {infty<XY>, -infty<XY>, infty<XY>, -infty<XY>}); size.resize(1 << (log + 1)); vc<int> ids(n); pos.resize(n); FOR(i, n) ids[i] = i; build(1, xs, ys, vs, ids); } void set(int i, const X& v) { i = pos[i]; for (int k = log; k >= 1; k--) { push(i >> k); } dat[i] = v; while (i > 1) i /= 2, dat[i] = MX::op(dat[2 * i], dat[2 * i + 1]); } void multiply(int i, const X& v) { i = pos[i]; for (int k = log; k >= 1; k--) { push(i >> k); } dat[i] = MX::op(dat[i], v); while (i > 1) i /= 2, dat[i] = MX::op(dat[2 * i], dat[2 * i + 1]); } // [xl, xr) x [yl, yr) X prod(XY xl, XY xr, XY yl, XY yr) { assert(xl <= xr && yl <= yr); return prod_rec(1, xl, xr, yl, yr); } X prod_all() { return dat[1]; } // [xl, xr) x [yl, yr) void apply(XY xl, XY xr, XY yl, XY yr, A a) { assert(xl <= xr && yl <= yr); return apply_rec(1, xl, xr, yl, yr, a); } private: void build(int idx, vc<XY> xs, vc<XY> ys, vc<X> vs, vc<int> ids, bool divx = true) { int n = len(xs); size[idx] = n; auto& [xmin, xmax, ymin, ymax] = closed_range[idx]; xmin = ymin = infty<XY>; xmax = ymax = -infty<XY>; FOR(i, n) { auto x = xs[i], y = ys[i]; chmin(xmin, x), chmax(xmax, x), chmin(ymin, y), chmax(ymax, y); } if (n == 1) { dat[idx] = vs[0]; pos[ids[0]] = idx; return; } int m = n / 2; vc<int> I(n); iota(all(I), 0); if (divx) { nth_element(I.begin(), I.begin() + m, I.end(), [xs](int i, int j) { return xs[i] < xs[j]; }); } else { nth_element(I.begin(), I.begin() + m, I.end(), [ys](int i, int j) { return ys[i] < ys[j]; }); } xs = rearrange(xs, I), ys = rearrange(ys, I), vs = rearrange(vs, I), ids = rearrange(ids, I); build(2 * idx + 0, {xs.begin(), xs.begin() + m}, {ys.begin(), ys.begin() + m}, {vs.begin(), vs.begin() + m}, {ids.begin(), ids.begin() + m}, !divx); build(2 * idx + 1, {xs.begin() + m, xs.end()}, {ys.begin() + m, ys.end()}, {vs.begin() + m, vs.end()}, {ids.begin() + m, ids.end()}, !divx); dat[idx] = MX::op(dat[2 * idx + 0], dat[2 * idx + 1]); } inline bool isin(XY x, XY y, int idx) { auto& [xmin, xmax, ymin, ymax] = closed_range[idx]; return (xmin <= x && x <= xmax && ymin <= y && y <= ymax); } void apply_at(int idx, A a) { dat[idx] = AM::act(dat[idx], a, size[idx]); if (idx < (1 << log)) lazy[idx] = MA::op(lazy[idx], a); } void push(int idx) { if (lazy[idx] == MA::unit()) return; apply_at(2 * idx + 0, lazy[idx]), apply_at(2 * idx + 1, lazy[idx]); lazy[idx] = MA::unit(); } X prod_rec(int idx, XY x1, XY x2, XY y1, XY y2) { if (idx >= len(closed_range)) return MX::unit(); auto& [xmin, xmax, ymin, ymax] = closed_range[idx]; if (xmin > xmax) return MX::unit(); if (x2 <= xmin || xmax < x1) return MX::unit(); if (y2 <= ymin || ymax < y1) return MX::unit(); if (x1 <= xmin && xmax < x2 && y1 <= ymin && ymax < y2) { return dat[idx]; } push(idx); return MX::op(prod_rec(2 * idx + 0, x1, x2, y1, y2), prod_rec(2 * idx + 1, x1, x2, y1, y2)); } void apply_rec(int idx, XY x1, XY x2, XY y1, XY y2, A a) { if (idx >= len(closed_range)) return; auto& [xmin, xmax, ymin, ymax] = closed_range[idx]; if (xmin > xmax) return; if (x2 <= xmin || xmax < x1) return; if (y2 <= ymin || ymax < y1) return; if (x1 <= xmin && xmax < x2 && y1 <= ymin && ymax < y2) { return apply_at(idx, a); } push(idx); apply_rec(2 * idx + 0, x1, x2, y1, y2, a); apply_rec(2 * idx + 1, x1, x2, y1, y2, a); dat[idx] = MX::op(dat[2 * idx + 0], dat[2 * idx + 1]); } }; #line 2 "alg/monoid/summax.hpp" template <typename E> struct Monoid_SumMax { using value_type = pair<E, E>; using X = value_type; static X op(X x, X y) { return {x.fi + y.fi, max(x.se, y.se)}; } static X from_element(E e) { return {e, e}; } static constexpr X unit() { return {E(0), -infty<E>}; } static constexpr bool commute = 1; }; #line 2 "alg/monoid/add.hpp" template <typename E> struct Monoid_Add { using X = E; using value_type = X; static constexpr X op(const X &x, const X &y) noexcept { return x + y; } static constexpr X inverse(const X &x) noexcept { return -x; } static constexpr X power(const X &x, ll n) noexcept { return X(n) * x; } static constexpr X unit() { return X(0); } static constexpr bool commute = true; }; #line 3 "alg/acted_monoid/summax_add.hpp" template <typename E> struct ActedMonoid_SumMax_Add { using Monoid_X = Monoid_SumMax<E>; using Monoid_A = Monoid_Add<E>; using X = typename Monoid_X::value_type; using A = typename Monoid_A::value_type; static constexpr X act(const X& x, const A& a, const ll& size) { auto [xs, xm] = x; xm = (xm == -infty<E> ? xm : xm + a); return {xs + E(size) * a, xm}; } }; #line 2 "random/base.hpp" u64 RNG_64() { static u64 x_ = u64(chrono::duration_cast<chrono::nanoseconds>(chrono::high_resolution_clock::now().time_since_epoch()).count()) * 10150724397891781847ULL; x_ ^= x_ << 7; return x_ ^= x_ >> 9; } u64 RNG(u64 lim) { return RNG_64() % lim; } ll RNG(ll l, ll r) { return l + RNG_64() % (r - l); } #line 7 "test/1_mytest/kdtree_am.test.cpp" void test() { ll LIM = RNG(1, 100); int N = RNG(1, 100); using AM = ActedMonoid_SumMax_Add<int>; using MX = AM::Monoid_X; vc<int> X, Y, W; vc<typename MX::value_type> val; FOR(i, N) { int x = RNG(0, LIM); int y = RNG(0, LIM); int v = RNG(0, 100); X.eb(x), Y.eb(y), val.eb(v, v); } KDTree_ActedMonoid<AM, int> KDT(X, Y, val); int Q = 100; FOR(Q) { int t = RNG(0, 4); int xl = RNG(0, LIM), xr = RNG(0, LIM), yl = RNG(0, LIM), yr = RNG(0, LIM); if (xl > xr) swap(xl, xr); if (yl > yr) swap(yl, yr); if (t == 0) { // multiply int k = RNG(0, N); int a = RNG(0, 100); int b = RNG(0, 100); KDT.multiply(k, {a, b}); val[k].fi += a; chmax(val[k].se, b); } if (t == 1) { // prod int sm = 0, mx = MX::unit().se; FOR(k, N) { if (xl <= X[k] && X[k] < xr && yl <= Y[k] && Y[k] < yr) { sm += val[k].fi, chmax(mx, val[k].se); } } auto res = KDT.prod(xl, xr, yl, yr); assert(res.fi == sm && res.se == mx); } if (t == 2) { // prod all int sm = 0, mx = MX::unit().se; FOR(k, N) { sm += val[k].fi, chmax(mx, val[k].se); } auto res = KDT.prod_all(); assert(res.fi == sm && res.se == mx); } if (t == 3) { // apply int a = RNG(0, 10); FOR(k, N) { if (xl <= X[k] && X[k] < xr && yl <= Y[k] && Y[k] < yr) { val[k].fi += a, val[k].se += a; } } KDT.apply(xl, xr, yl, yr, a); } } } void solve() { int a, b; cin >> a >> b; cout << a + b << "\n"; } signed main() { FOR(100) test(); solve(); return 0; }