This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub maspypy/library
#include "ds/kdtree/kdtree_acted_monoid.hpp"
template <class ActedMonoid, typename XY> struct KDTree_ActedMonoid { using AM = ActedMonoid; using MX = typename AM::Monoid_X; using MA = typename AM::Monoid_A; using X = typename AM::X; using A = typename AM::A; static_assert(MX::commute); // 小数も考慮すると、閉で持つ設計方針になる。ただし、クエリはいつもの半開を使う vc<tuple<XY, XY, XY, XY>> closed_range; vc<X> dat; vc<A> lazy; vc<int> size; vc<int> pos; // raw data -> index int n, log; KDTree_ActedMonoid(vc<XY> xs, vc<XY> ys, vc<X> vs) : n(len(xs)) { assert(n > 0); log = 0; while ((1 << log) < n) ++log; dat.resize(1 << (log + 1)); lazy.assign(1 << log, MA::unit()); closed_range.assign(1 << (log + 1), {infty<XY>, -infty<XY>, infty<XY>, -infty<XY>}); size.resize(1 << (log + 1)); vc<int> ids(n); pos.resize(n); FOR(i, n) ids[i] = i; build(1, xs, ys, vs, ids); } void set(int i, const X& v) { i = pos[i]; for (int k = log; k >= 1; k--) { push(i >> k); } dat[i] = v; while (i > 1) i /= 2, dat[i] = MX::op(dat[2 * i], dat[2 * i + 1]); } void multiply(int i, const X& v) { i = pos[i]; for (int k = log; k >= 1; k--) { push(i >> k); } dat[i] = MX::op(dat[i], v); while (i > 1) i /= 2, dat[i] = MX::op(dat[2 * i], dat[2 * i + 1]); } // [xl, xr) x [yl, yr) X prod(XY xl, XY xr, XY yl, XY yr) { assert(xl <= xr && yl <= yr); return prod_rec(1, xl, xr, yl, yr); } X prod_all() { return dat[1]; } // [xl, xr) x [yl, yr) void apply(XY xl, XY xr, XY yl, XY yr, A a) { assert(xl <= xr && yl <= yr); return apply_rec(1, xl, xr, yl, yr, a); } private: void build(int idx, vc<XY> xs, vc<XY> ys, vc<X> vs, vc<int> ids, bool divx = true) { int n = len(xs); size[idx] = n; auto& [xmin, xmax, ymin, ymax] = closed_range[idx]; xmin = ymin = infty<XY>; xmax = ymax = -infty<XY>; FOR(i, n) { auto x = xs[i], y = ys[i]; chmin(xmin, x), chmax(xmax, x), chmin(ymin, y), chmax(ymax, y); } if (n == 1) { dat[idx] = vs[0]; pos[ids[0]] = idx; return; } int m = n / 2; vc<int> I(n); iota(all(I), 0); if (divx) { nth_element(I.begin(), I.begin() + m, I.end(), [xs](int i, int j) { return xs[i] < xs[j]; }); } else { nth_element(I.begin(), I.begin() + m, I.end(), [ys](int i, int j) { return ys[i] < ys[j]; }); } xs = rearrange(xs, I), ys = rearrange(ys, I), vs = rearrange(vs, I), ids = rearrange(ids, I); build(2 * idx + 0, {xs.begin(), xs.begin() + m}, {ys.begin(), ys.begin() + m}, {vs.begin(), vs.begin() + m}, {ids.begin(), ids.begin() + m}, !divx); build(2 * idx + 1, {xs.begin() + m, xs.end()}, {ys.begin() + m, ys.end()}, {vs.begin() + m, vs.end()}, {ids.begin() + m, ids.end()}, !divx); dat[idx] = MX::op(dat[2 * idx + 0], dat[2 * idx + 1]); } inline bool isin(XY x, XY y, int idx) { auto& [xmin, xmax, ymin, ymax] = closed_range[idx]; return (xmin <= x && x <= xmax && ymin <= y && y <= ymax); } void apply_at(int idx, A a) { dat[idx] = AM::act(dat[idx], a, size[idx]); if (idx < (1 << log)) lazy[idx] = MA::op(lazy[idx], a); } void push(int idx) { if (lazy[idx] == MA::unit()) return; apply_at(2 * idx + 0, lazy[idx]), apply_at(2 * idx + 1, lazy[idx]); lazy[idx] = MA::unit(); } X prod_rec(int idx, XY x1, XY x2, XY y1, XY y2) { if (idx >= len(closed_range)) return MX::unit(); auto& [xmin, xmax, ymin, ymax] = closed_range[idx]; if (xmin > xmax) return MX::unit(); if (x2 <= xmin || xmax < x1) return MX::unit(); if (y2 <= ymin || ymax < y1) return MX::unit(); if (x1 <= xmin && xmax < x2 && y1 <= ymin && ymax < y2) { return dat[idx]; } push(idx); return MX::op(prod_rec(2 * idx + 0, x1, x2, y1, y2), prod_rec(2 * idx + 1, x1, x2, y1, y2)); } void apply_rec(int idx, XY x1, XY x2, XY y1, XY y2, A a) { if (idx >= len(closed_range)) return; auto& [xmin, xmax, ymin, ymax] = closed_range[idx]; if (xmin > xmax) return; if (x2 <= xmin || xmax < x1) return; if (y2 <= ymin || ymax < y1) return; if (x1 <= xmin && xmax < x2 && y1 <= ymin && ymax < y2) { return apply_at(idx, a); } push(idx); apply_rec(2 * idx + 0, x1, x2, y1, y2, a); apply_rec(2 * idx + 1, x1, x2, y1, y2, a); dat[idx] = MX::op(dat[2 * idx + 0], dat[2 * idx + 1]); } };
#line 1 "ds/kdtree/kdtree_acted_monoid.hpp" template <class ActedMonoid, typename XY> struct KDTree_ActedMonoid { using AM = ActedMonoid; using MX = typename AM::Monoid_X; using MA = typename AM::Monoid_A; using X = typename AM::X; using A = typename AM::A; static_assert(MX::commute); // 小数も考慮すると、閉で持つ設計方針になる。ただし、クエリはいつもの半開を使う vc<tuple<XY, XY, XY, XY>> closed_range; vc<X> dat; vc<A> lazy; vc<int> size; vc<int> pos; // raw data -> index int n, log; KDTree_ActedMonoid(vc<XY> xs, vc<XY> ys, vc<X> vs) : n(len(xs)) { assert(n > 0); log = 0; while ((1 << log) < n) ++log; dat.resize(1 << (log + 1)); lazy.assign(1 << log, MA::unit()); closed_range.assign(1 << (log + 1), {infty<XY>, -infty<XY>, infty<XY>, -infty<XY>}); size.resize(1 << (log + 1)); vc<int> ids(n); pos.resize(n); FOR(i, n) ids[i] = i; build(1, xs, ys, vs, ids); } void set(int i, const X& v) { i = pos[i]; for (int k = log; k >= 1; k--) { push(i >> k); } dat[i] = v; while (i > 1) i /= 2, dat[i] = MX::op(dat[2 * i], dat[2 * i + 1]); } void multiply(int i, const X& v) { i = pos[i]; for (int k = log; k >= 1; k--) { push(i >> k); } dat[i] = MX::op(dat[i], v); while (i > 1) i /= 2, dat[i] = MX::op(dat[2 * i], dat[2 * i + 1]); } // [xl, xr) x [yl, yr) X prod(XY xl, XY xr, XY yl, XY yr) { assert(xl <= xr && yl <= yr); return prod_rec(1, xl, xr, yl, yr); } X prod_all() { return dat[1]; } // [xl, xr) x [yl, yr) void apply(XY xl, XY xr, XY yl, XY yr, A a) { assert(xl <= xr && yl <= yr); return apply_rec(1, xl, xr, yl, yr, a); } private: void build(int idx, vc<XY> xs, vc<XY> ys, vc<X> vs, vc<int> ids, bool divx = true) { int n = len(xs); size[idx] = n; auto& [xmin, xmax, ymin, ymax] = closed_range[idx]; xmin = ymin = infty<XY>; xmax = ymax = -infty<XY>; FOR(i, n) { auto x = xs[i], y = ys[i]; chmin(xmin, x), chmax(xmax, x), chmin(ymin, y), chmax(ymax, y); } if (n == 1) { dat[idx] = vs[0]; pos[ids[0]] = idx; return; } int m = n / 2; vc<int> I(n); iota(all(I), 0); if (divx) { nth_element(I.begin(), I.begin() + m, I.end(), [xs](int i, int j) { return xs[i] < xs[j]; }); } else { nth_element(I.begin(), I.begin() + m, I.end(), [ys](int i, int j) { return ys[i] < ys[j]; }); } xs = rearrange(xs, I), ys = rearrange(ys, I), vs = rearrange(vs, I), ids = rearrange(ids, I); build(2 * idx + 0, {xs.begin(), xs.begin() + m}, {ys.begin(), ys.begin() + m}, {vs.begin(), vs.begin() + m}, {ids.begin(), ids.begin() + m}, !divx); build(2 * idx + 1, {xs.begin() + m, xs.end()}, {ys.begin() + m, ys.end()}, {vs.begin() + m, vs.end()}, {ids.begin() + m, ids.end()}, !divx); dat[idx] = MX::op(dat[2 * idx + 0], dat[2 * idx + 1]); } inline bool isin(XY x, XY y, int idx) { auto& [xmin, xmax, ymin, ymax] = closed_range[idx]; return (xmin <= x && x <= xmax && ymin <= y && y <= ymax); } void apply_at(int idx, A a) { dat[idx] = AM::act(dat[idx], a, size[idx]); if (idx < (1 << log)) lazy[idx] = MA::op(lazy[idx], a); } void push(int idx) { if (lazy[idx] == MA::unit()) return; apply_at(2 * idx + 0, lazy[idx]), apply_at(2 * idx + 1, lazy[idx]); lazy[idx] = MA::unit(); } X prod_rec(int idx, XY x1, XY x2, XY y1, XY y2) { if (idx >= len(closed_range)) return MX::unit(); auto& [xmin, xmax, ymin, ymax] = closed_range[idx]; if (xmin > xmax) return MX::unit(); if (x2 <= xmin || xmax < x1) return MX::unit(); if (y2 <= ymin || ymax < y1) return MX::unit(); if (x1 <= xmin && xmax < x2 && y1 <= ymin && ymax < y2) { return dat[idx]; } push(idx); return MX::op(prod_rec(2 * idx + 0, x1, x2, y1, y2), prod_rec(2 * idx + 1, x1, x2, y1, y2)); } void apply_rec(int idx, XY x1, XY x2, XY y1, XY y2, A a) { if (idx >= len(closed_range)) return; auto& [xmin, xmax, ymin, ymax] = closed_range[idx]; if (xmin > xmax) return; if (x2 <= xmin || xmax < x1) return; if (y2 <= ymin || ymax < y1) return; if (x1 <= xmin && xmax < x2 && y1 <= ymin && ymax < y2) { return apply_at(idx, a); } push(idx); apply_rec(2 * idx + 0, x1, x2, y1, y2, a); apply_rec(2 * idx + 1, x1, x2, y1, y2, a); dat[idx] = MX::op(dat[2 * idx + 0], dat[2 * idx + 1]); } };