library

This documentation is automatically generated by online-judge-tools/verification-helper

View the Project on GitHub maspypy/library

:heavy_check_mark: test/1_mytest/extended_lichao_2.test.cpp

Depends on

Code

#define PROBLEM "https://judge.yosupo.jp/problem/aplusb"
#include "my_template.hpp"

#include "convex/extended_lichao_2.hpp"
#include "random/base.hpp"
#include "random/shuffle.hpp"

void test_minimize() {
  ll N = RNG(1, 100);
  vi X(201);
  FOR(i, 201) X[i] = i - 100;
  shuffle(X);
  X.resize(N);

  Extended_LiChao_Tree_2<true> LCT(X);
  vi A(N, infty<ll>);

  ll Q = 100;
  FOR(Q) {
    ll t = RNG(0, 3);
    ll L = RNG(-100, 101);
    ll R = RNG(-100, 101);
    if (L > R) swap(L, R);
    ++R;
    ll a = RNG(-10, 10);
    ll b = RNG(-100, 100);
    if (t == 0) {
      // line
      LCT.chmin_line(a, b);
      FOR(i, N) chmin(A[i], a * X[i] + b);
    }
    if (t == 1) {
      // segment
      LCT.chmin_segment(L, R, a, b);
      FOR(i, N) {
        if (L <= X[i] && X[i] < R) chmin(A[i], a * X[i] + b);
      }
    }
    if (t == 2) {
      // apply
      LCT.add_segment(L, R, b);
      FOR(i, N) {
        if (L <= X[i] && X[i] < R && A[i] < infty<ll>) A[i] += b;
      }
    }
    ll god = infty<ll>;
    FOR(i, N) {
      if (L <= X[i] && X[i] < R) chmin(god, A[i]);
    }
    ll ans = LCT.query(L, R);
    assert(god == ans);
  }
}

void test_maximize() {
  ll N = RNG(1, 100);
  vi X(201);
  FOR(i, 201) X[i] = i - 100;
  shuffle(X);
  X.resize(N);

  Extended_LiChao_Tree_2<false> LCT(X);
  vi A(N, -infty<ll>);

  ll Q = 100;
  FOR(Q) {
    ll t = RNG(0, 3);
    ll L = RNG(-100, 101);
    ll R = RNG(-100, 101);
    if (L > R) swap(L, R);
    ++R;
    ll a = RNG(-10, 10);
    ll b = RNG(-100, 100);
    if (t == 0) {
      // line
      LCT.chmax_line(a, b);
      FOR(i, N) chmax(A[i], a * X[i] + b);
    }
    if (t == 1) {
      // segment
      LCT.chmax_segment(L, R, a, b);
      FOR(i, N) {
        if (L <= X[i] && X[i] < R) chmax(A[i], a * X[i] + b);
      }
    }
    if (t == 2) {
      // apply
      LCT.add_segment(L, R, b);
      FOR(i, N) {
        if (L <= X[i] && X[i] < R && A[i] > -infty<ll>) A[i] += b;
      }
    }
    ll god = -infty<ll>;
    FOR(i, N) {
      if (L <= X[i] && X[i] < R) chmax(god, A[i]);
    }
    ll ans = LCT.query(L, R);
    assert(god == ans);
  }
}

void solve() {
  int a, b;
  cin >> a >> b;
  cout << a + b << "\n";
}

signed main() {
  FOR(10000) test_minimize();
  FOR(10000) test_maximize();
  solve();
  return 0;
}
#line 1 "test/1_mytest/extended_lichao_2.test.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/aplusb"
#line 1 "my_template.hpp"
#if defined(LOCAL)
#include <my_template_compiled.hpp>
#else

// https://codeforces.com/blog/entry/96344
// https://codeforces.com/blog/entry/126772?#comment-1154880
#include <bits/allocator.h>
#pragma GCC optimize("Ofast,unroll-loops")
#pragma GCC target("avx2,popcnt")
#include <bits/stdc++.h>

using namespace std;

using ll = long long;
using u8 = uint8_t;
using u16 = uint16_t;
using u32 = uint32_t;
using u64 = uint64_t;
using i128 = __int128;
using u128 = unsigned __int128;
using f128 = __float128;

template <class T>
constexpr T infty = 0;
template <>
constexpr int infty<int> = 1'010'000'000;
template <>
constexpr ll infty<ll> = 2'020'000'000'000'000'000;
template <>
constexpr u32 infty<u32> = infty<int>;
template <>
constexpr u64 infty<u64> = infty<ll>;
template <>
constexpr i128 infty<i128> = i128(infty<ll>) * 2'000'000'000'000'000'000;
template <>
constexpr double infty<double> = infty<ll>;
template <>
constexpr long double infty<long double> = infty<ll>;

using pi = pair<ll, ll>;
using vi = vector<ll>;
template <class T>
using vc = vector<T>;
template <class T>
using vvc = vector<vc<T>>;
template <class T>
using vvvc = vector<vvc<T>>;
template <class T>
using vvvvc = vector<vvvc<T>>;
template <class T>
using vvvvvc = vector<vvvvc<T>>;
template <class T>
using pq = priority_queue<T>;
template <class T>
using pqg = priority_queue<T, vector<T>, greater<T>>;

#define vv(type, name, h, ...) vector<vector<type>> name(h, vector<type>(__VA_ARGS__))
#define vvv(type, name, h, w, ...) vector<vector<vector<type>>> name(h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))
#define vvvv(type, name, a, b, c, ...) \
  vector<vector<vector<vector<type>>>> name(a, vector<vector<vector<type>>>(b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))

// https://trap.jp/post/1224/
#define FOR1(a) for (ll _ = 0; _ < ll(a); ++_)
#define FOR2(i, a) for (ll i = 0; i < ll(a); ++i)
#define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i)
#define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c))
#define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i)
#define overload4(a, b, c, d, e, ...) e
#define overload3(a, b, c, d, ...) d
#define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__)
#define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__)

#define all(x) x.begin(), x.end()
#define len(x) ll(x.size())
#define elif else if

#define eb emplace_back
#define mp make_pair
#define mt make_tuple
#define fi first
#define se second

#define stoi stoll

int popcnt(int x) { return __builtin_popcount(x); }
int popcnt(u32 x) { return __builtin_popcount(x); }
int popcnt(ll x) { return __builtin_popcountll(x); }
int popcnt(u64 x) { return __builtin_popcountll(x); }
int popcnt_sgn(int x) { return (__builtin_parity(unsigned(x)) & 1 ? -1 : 1); }
int popcnt_sgn(u32 x) { return (__builtin_parity(x) & 1 ? -1 : 1); }
int popcnt_sgn(ll x) { return (__builtin_parityll(x) & 1 ? -1 : 1); }
int popcnt_sgn(u64 x) { return (__builtin_parityll(x) & 1 ? -1 : 1); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2)
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2)
int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }

template <typename T>
T kth_bit(int k) {
  return T(1) << k;
}
template <typename T>
bool has_kth_bit(T x, int k) {
  return x >> k & 1;
}

template <typename UINT>
struct all_bit {
  struct iter {
    UINT s;
    iter(UINT s) : s(s) {}
    int operator*() const { return lowbit(s); }
    iter &operator++() {
      s &= s - 1;
      return *this;
    }
    bool operator!=(const iter) const { return s != 0; }
  };
  UINT s;
  all_bit(UINT s) : s(s) {}
  iter begin() const { return iter(s); }
  iter end() const { return iter(0); }
};

template <typename UINT>
struct all_subset {
  static_assert(is_unsigned<UINT>::value);
  struct iter {
    UINT s, t;
    bool ed;
    iter(UINT s) : s(s), t(s), ed(0) {}
    int operator*() const { return s ^ t; }
    iter &operator++() {
      (t == 0 ? ed = 1 : t = (t - 1) & s);
      return *this;
    }
    bool operator!=(const iter) const { return !ed; }
  };
  UINT s;
  all_subset(UINT s) : s(s) {}
  iter begin() const { return iter(s); }
  iter end() const { return iter(0); }
};

template <typename T>
T floor(T a, T b) {
  return a / b - (a % b && (a ^ b) < 0);
}
template <typename T>
T ceil(T x, T y) {
  return floor(x + y - 1, y);
}
template <typename T>
T bmod(T x, T y) {
  return x - y * floor(x, y);
}
template <typename T>
pair<T, T> divmod(T x, T y) {
  T q = floor(x, y);
  return {q, x - q * y};
}

template <typename T, typename U>
T SUM(const vector<U> &A) {
  T sm = 0;
  for (auto &&a: A) sm += a;
  return sm;
}

#define MIN(v) *min_element(all(v))
#define MAX(v) *max_element(all(v))
#define LB(c, x) distance((c).begin(), lower_bound(all(c), (x)))
#define UB(c, x) distance((c).begin(), upper_bound(all(c), (x)))
#define UNIQUE(x) sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit()

template <typename T>
T POP(deque<T> &que) {
  T a = que.front();
  que.pop_front();
  return a;
}
template <typename T>
T POP(pq<T> &que) {
  T a = que.top();
  que.pop();
  return a;
}
template <typename T>
T POP(pqg<T> &que) {
  T a = que.top();
  que.pop();
  return a;
}
template <typename T>
T POP(vc<T> &que) {
  T a = que.back();
  que.pop_back();
  return a;
}

template <typename F>
ll binary_search(F check, ll ok, ll ng, bool check_ok = true) {
  if (check_ok) assert(check(ok));
  while (abs(ok - ng) > 1) {
    auto x = (ng + ok) / 2;
    (check(x) ? ok : ng) = x;
  }
  return ok;
}
template <typename F>
double binary_search_real(F check, double ok, double ng, int iter = 100) {
  FOR(iter) {
    double x = (ok + ng) / 2;
    (check(x) ? ok : ng) = x;
  }
  return (ok + ng) / 2;
}

template <class T, class S>
inline bool chmax(T &a, const S &b) {
  return (a < b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chmin(T &a, const S &b) {
  return (a > b ? a = b, 1 : 0);
}

// ? は -1
vc<int> s_to_vi(const string &S, char first_char) {
  vc<int> A(S.size());
  FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); }
  return A;
}

template <typename T, typename U>
vector<T> cumsum(vector<U> &A, int off = 1) {
  int N = A.size();
  vector<T> B(N + 1);
  FOR(i, N) { B[i + 1] = B[i] + A[i]; }
  if (off == 0) B.erase(B.begin());
  return B;
}

// stable sort
template <typename T>
vector<int> argsort(const vector<T> &A) {
  vector<int> ids(len(A));
  iota(all(ids), 0);
  sort(all(ids), [&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); });
  return ids;
}

// A[I[0]], A[I[1]], ...
template <typename T>
vc<T> rearrange(const vc<T> &A, const vc<int> &I) {
  vc<T> B(len(I));
  FOR(i, len(I)) B[i] = A[I[i]];
  return B;
}

template <typename T, typename... Vectors>
void concat(vc<T> &first, const Vectors &... others) {
  vc<T> &res = first;
  (res.insert(res.end(), others.begin(), others.end()), ...);
}
#endif
#line 3 "test/1_mytest/extended_lichao_2.test.cpp"

#line 1 "convex/extended_lichao_2.hpp"
// https://codeforces.com/blog/entry/86731)
// chmin(A[x],ax+b), A[x]+=b, get range min
template <bool MINIMIZE>
struct Extended_LiChao_Tree_2 {
  // 入出力以外では minimize している
  struct F {
    ll a, b;
    F(ll a = 0, ll b = 0) : a(a), b(b) {}
    ll operator()(ll x) { return a * x + b; }
    void add(ll c) {
      if (b != infty<ll>) b += c;
    }
  };

  vi X, lazy;
  vc<F> dat;
  vi val;
  int n, log, size;

  Extended_LiChao_Tree_2(vi X_) : X(X_) {
    UNIQUE(X);
    n = len(X), log = 1;
    while ((1 << log) < n) ++log;
    size = 1 << log;
    dat.assign(size << 1, F(0, infty<ll>));
    lazy.assign(size << 1, 0);
    val.assign(size << 1, infty<ll>);
  }

  // O(logN). f(x) := min(f(x), ax+b).
  void chmin_line(ll a, ll b) {
    static_assert(MINIMIZE);
    chmin_line_rec(1, F(a, b), 0, n);
  }

  // O(logN). f(x) := max(f(x), ax+b).
  void chmax_line(ll a, ll b) {
    static_assert(!MINIMIZE);
    chmin_line_rec(1, F(-a, -b), 0, n);
  }

  // O(log^2N). f(x) := min(f(x), ax+b) for L<=x<R.
  // index ではなくて X[] の範囲.
  void chmin_segment(ll L, ll R, ll a, ll b) {
    static_assert(MINIMIZE);
    chmin_segment_rec(1, LB(X, L), LB(X, R), F(a, b), 0, n);
  }

  // O(log^2N). f(x) := max(f(x), ax+b) for L<=x<R.
  // index ではなくて X[] の範囲.
  void chmax_segment(ll L, ll R, ll a, ll b) {
    static_assert(!MINIMIZE);
    chmin_segment_rec(1, LB(X, L), LB(X, R), F(-a, -b), 0, n);
  }

  // O(1). f(x) := f(x)+b.
  void add_line(ll b) {
    if (!MINIMIZE) b = -b;
    add_segment_rec(1, 0, n, b, 0, n);
  }

  // O(log^2N). f(x) := f(x)+b for L<=x<R.
  // index ではなくて X[] の範囲.
  void add_segment(ll L, ll R, ll b) {
    if (!MINIMIZE) b = -b;
    add_segment_rec(1, LB(X, L), LB(X, R), b, 0, n);
  }

  ll query(ll L, ll R) {
    ll ans = query_rec(1, LB(X, L), LB(X, R), 0, n, 0);
    return (MINIMIZE ? ans : -ans);
  }

private:
  void push(int i) {
    dat[2 * i + 0].add(lazy[i]), lazy[2 * i + 0] += lazy[i];
    dat[2 * i + 1].add(lazy[i]), lazy[2 * i + 1] += lazy[i];
    if (val[2 * i + 0] < infty<ll>) val[2 * i + 0] += lazy[i];
    if (val[2 * i + 1] < infty<ll>) val[2 * i + 1] += lazy[i];
    lazy[i] = 0;
  }

  void chmin_segment_rec(int i, ll xl, ll xr, F f, ll node_l, ll node_r) {
    chmax(xl, node_l), chmin(xr, node_r);
    if (xl >= xr) return;
    if (node_l < xl || xr < node_r) {
      ll node_m = (node_l + node_r) / 2;
      push(i);
      chmin_segment_rec(2 * i + 0, xl, xr, f, node_l, node_m);
      chmin_segment_rec(2 * i + 1, xl, xr, f, node_m, node_r);
      chmin(val[i], min(val[2 * i + 0], val[2 * i + 1]));
      return;
    }
    chmin_line_rec(i, f, node_l, node_r);
  }

  void chmin_line_rec(int i, F f, ll node_l, ll node_r) {
    F g = dat[i];
    ll fl = f(X[node_l]), fr = f(X[node_r - 1]);
    ll gl = g(X[node_l]), gr = g(X[node_r - 1]);
    chmin(val[i], min(fl, fr));
    if (fl <= gl && fr <= gr) {
      dat[i] = f;
      return;
    }
    if (fl >= gl && fr >= gr) { return; }
    ll node_m = (node_l + node_r) / 2;
    ll fm = f(X[node_m]), gm = g(X[node_m]);
    push(i);
    if (fm < gm && fl < gl) dat[i] = f, chmin_line_rec(2 * i + 1, g, node_m, node_r);
    elif (fm < gm && fl >= gl) dat[i] = f, chmin_line_rec(2 * i + 0, g, node_l, node_m);
    elif (fm >= gm && gl < fl) chmin_line_rec(2 * i + 1, f, node_m, node_r);
    elif (fm >= gm && gl >= fl) chmin_line_rec(2 * i + 0, f, node_l, node_m);
  }

  void add_segment_rec(int i, ll xl, ll xr, ll b, ll node_l, ll node_r) {
    chmax(xl, node_l), chmin(xr, node_r);
    if (xl >= xr) return;
    if (node_l < xl || xr < node_r) {
      ll node_m = (node_l + node_r) / 2;
      push(i);
      chmin_line_rec(2 * i + 0, dat[i], node_l, node_m);
      chmin_line_rec(2 * i + 1, dat[i], node_m, node_r);
      dat[i] = F(0, infty<ll>);
      add_segment_rec(2 * i + 0, xl, xr, b, node_l, node_m);
      add_segment_rec(2 * i + 1, xl, xr, b, node_m, node_r);
      val[i] = min(val[2 * i + 0], val[2 * i + 1]);
      chmin(val[i], dat[i](X[node_l]));
      chmin(val[i], dat[i](X[node_r - 1]));
      return;
    }
    dat[i].add(b), lazy[i] += b;
    if (val[i] < infty<ll>) val[i] += b;
  }

  ll query_rec(int i, ll L, ll R, ll node_l, ll node_r, ll laz) {
    chmax(L, node_l), chmin(R, node_r);
    if (L >= R) return infty<ll>;
    if (node_l < L || R < node_r) {
      ll node_m = (node_l + node_r) / 2;
      ll ans = infty<ll>;
      if (dat[i].b != infty<ll>) chmin(ans, min(dat[i](X[L]), dat[i](X[R - 1])) + laz);
      laz += lazy[i];
      chmin(ans, query_rec(2 * i + 0, L, R, node_l, node_m, laz));
      chmin(ans, query_rec(2 * i + 1, L, R, node_m, node_r, laz));
      return ans;
    }
    return (val[i] == infty<ll> ? infty<ll> : val[i] + laz);
  }
};
#line 2 "random/base.hpp"

u64 RNG_64() {
  static u64 x_ = u64(chrono::duration_cast<chrono::nanoseconds>(chrono::high_resolution_clock::now().time_since_epoch()).count()) * 10150724397891781847ULL;
  x_ ^= x_ << 7;
  return x_ ^= x_ >> 9;
}

u64 RNG(u64 lim) { return RNG_64() % lim; }

ll RNG(ll l, ll r) { return l + RNG_64() % (r - l); }
#line 2 "random/shuffle.hpp"

template <typename T>
void shuffle(vc<T>& A) {
  FOR(i, len(A)) {
    int j = RNG(0, i + 1);
    if (i != j) swap(A[i], A[j]);
  }
}
#line 7 "test/1_mytest/extended_lichao_2.test.cpp"

void test_minimize() {
  ll N = RNG(1, 100);
  vi X(201);
  FOR(i, 201) X[i] = i - 100;
  shuffle(X);
  X.resize(N);

  Extended_LiChao_Tree_2<true> LCT(X);
  vi A(N, infty<ll>);

  ll Q = 100;
  FOR(Q) {
    ll t = RNG(0, 3);
    ll L = RNG(-100, 101);
    ll R = RNG(-100, 101);
    if (L > R) swap(L, R);
    ++R;
    ll a = RNG(-10, 10);
    ll b = RNG(-100, 100);
    if (t == 0) {
      // line
      LCT.chmin_line(a, b);
      FOR(i, N) chmin(A[i], a * X[i] + b);
    }
    if (t == 1) {
      // segment
      LCT.chmin_segment(L, R, a, b);
      FOR(i, N) {
        if (L <= X[i] && X[i] < R) chmin(A[i], a * X[i] + b);
      }
    }
    if (t == 2) {
      // apply
      LCT.add_segment(L, R, b);
      FOR(i, N) {
        if (L <= X[i] && X[i] < R && A[i] < infty<ll>) A[i] += b;
      }
    }
    ll god = infty<ll>;
    FOR(i, N) {
      if (L <= X[i] && X[i] < R) chmin(god, A[i]);
    }
    ll ans = LCT.query(L, R);
    assert(god == ans);
  }
}

void test_maximize() {
  ll N = RNG(1, 100);
  vi X(201);
  FOR(i, 201) X[i] = i - 100;
  shuffle(X);
  X.resize(N);

  Extended_LiChao_Tree_2<false> LCT(X);
  vi A(N, -infty<ll>);

  ll Q = 100;
  FOR(Q) {
    ll t = RNG(0, 3);
    ll L = RNG(-100, 101);
    ll R = RNG(-100, 101);
    if (L > R) swap(L, R);
    ++R;
    ll a = RNG(-10, 10);
    ll b = RNG(-100, 100);
    if (t == 0) {
      // line
      LCT.chmax_line(a, b);
      FOR(i, N) chmax(A[i], a * X[i] + b);
    }
    if (t == 1) {
      // segment
      LCT.chmax_segment(L, R, a, b);
      FOR(i, N) {
        if (L <= X[i] && X[i] < R) chmax(A[i], a * X[i] + b);
      }
    }
    if (t == 2) {
      // apply
      LCT.add_segment(L, R, b);
      FOR(i, N) {
        if (L <= X[i] && X[i] < R && A[i] > -infty<ll>) A[i] += b;
      }
    }
    ll god = -infty<ll>;
    FOR(i, N) {
      if (L <= X[i] && X[i] < R) chmax(god, A[i]);
    }
    ll ans = LCT.query(L, R);
    assert(god == ans);
  }
}

void solve() {
  int a, b;
  cin >> a >> b;
  cout << a + b << "\n";
}

signed main() {
  FOR(10000) test_minimize();
  FOR(10000) test_maximize();
  solve();
  return 0;
}
Back to top page