This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub maspypy/library
#include "convex/extended_lichao_2.hpp"
// https://codeforces.com/blog/entry/86731) // chmin(A[x],ax+b), A[x]+=b, get range min template <bool MINIMIZE> struct Extended_LiChao_Tree_2 { // 入出力以外では minimize している struct F { ll a, b; F(ll a = 0, ll b = 0) : a(a), b(b) {} ll operator()(ll x) { return a * x + b; } void add(ll c) { if (b != infty<ll>) b += c; } }; vi X, lazy; vc<F> dat; vi val; int n, log, size; Extended_LiChao_Tree_2(vi X_) : X(X_) { UNIQUE(X); n = len(X), log = 1; while ((1 << log) < n) ++log; size = 1 << log; dat.assign(size << 1, F(0, infty<ll>)); lazy.assign(size << 1, 0); val.assign(size << 1, infty<ll>); } // O(logN). f(x) := min(f(x), ax+b). void chmin_line(ll a, ll b) { static_assert(MINIMIZE); chmin_line_rec(1, F(a, b), 0, n); } // O(logN). f(x) := max(f(x), ax+b). void chmax_line(ll a, ll b) { static_assert(!MINIMIZE); chmin_line_rec(1, F(-a, -b), 0, n); } // O(log^2N). f(x) := min(f(x), ax+b) for L<=x<R. // index ではなくて X[] の範囲. void chmin_segment(ll L, ll R, ll a, ll b) { static_assert(MINIMIZE); chmin_segment_rec(1, LB(X, L), LB(X, R), F(a, b), 0, n); } // O(log^2N). f(x) := max(f(x), ax+b) for L<=x<R. // index ではなくて X[] の範囲. void chmax_segment(ll L, ll R, ll a, ll b) { static_assert(!MINIMIZE); chmin_segment_rec(1, LB(X, L), LB(X, R), F(-a, -b), 0, n); } // O(1). f(x) := f(x)+b. void add_line(ll b) { if (!MINIMIZE) b = -b; add_segment_rec(1, 0, n, b, 0, n); } // O(log^2N). f(x) := f(x)+b for L<=x<R. // index ではなくて X[] の範囲. void add_segment(ll L, ll R, ll b) { if (!MINIMIZE) b = -b; add_segment_rec(1, LB(X, L), LB(X, R), b, 0, n); } ll query(ll L, ll R) { ll ans = query_rec(1, LB(X, L), LB(X, R), 0, n, 0); return (MINIMIZE ? ans : -ans); } private: void push(int i) { dat[2 * i + 0].add(lazy[i]), lazy[2 * i + 0] += lazy[i]; dat[2 * i + 1].add(lazy[i]), lazy[2 * i + 1] += lazy[i]; if (val[2 * i + 0] < infty<ll>) val[2 * i + 0] += lazy[i]; if (val[2 * i + 1] < infty<ll>) val[2 * i + 1] += lazy[i]; lazy[i] = 0; } void chmin_segment_rec(int i, ll xl, ll xr, F f, ll node_l, ll node_r) { chmax(xl, node_l), chmin(xr, node_r); if (xl >= xr) return; if (node_l < xl || xr < node_r) { ll node_m = (node_l + node_r) / 2; push(i); chmin_segment_rec(2 * i + 0, xl, xr, f, node_l, node_m); chmin_segment_rec(2 * i + 1, xl, xr, f, node_m, node_r); chmin(val[i], min(val[2 * i + 0], val[2 * i + 1])); return; } chmin_line_rec(i, f, node_l, node_r); } void chmin_line_rec(int i, F f, ll node_l, ll node_r) { F g = dat[i]; ll fl = f(X[node_l]), fr = f(X[node_r - 1]); ll gl = g(X[node_l]), gr = g(X[node_r - 1]); chmin(val[i], min(fl, fr)); if (fl <= gl && fr <= gr) { dat[i] = f; return; } if (fl >= gl && fr >= gr) { return; } ll node_m = (node_l + node_r) / 2; ll fm = f(X[node_m]), gm = g(X[node_m]); push(i); if (fm < gm && fl < gl) dat[i] = f, chmin_line_rec(2 * i + 1, g, node_m, node_r); elif (fm < gm && fl >= gl) dat[i] = f, chmin_line_rec(2 * i + 0, g, node_l, node_m); elif (fm >= gm && gl < fl) chmin_line_rec(2 * i + 1, f, node_m, node_r); elif (fm >= gm && gl >= fl) chmin_line_rec(2 * i + 0, f, node_l, node_m); } void add_segment_rec(int i, ll xl, ll xr, ll b, ll node_l, ll node_r) { chmax(xl, node_l), chmin(xr, node_r); if (xl >= xr) return; if (node_l < xl || xr < node_r) { ll node_m = (node_l + node_r) / 2; push(i); chmin_line_rec(2 * i + 0, dat[i], node_l, node_m); chmin_line_rec(2 * i + 1, dat[i], node_m, node_r); dat[i] = F(0, infty<ll>); add_segment_rec(2 * i + 0, xl, xr, b, node_l, node_m); add_segment_rec(2 * i + 1, xl, xr, b, node_m, node_r); val[i] = min(val[2 * i + 0], val[2 * i + 1]); chmin(val[i], dat[i](X[node_l])); chmin(val[i], dat[i](X[node_r - 1])); return; } dat[i].add(b), lazy[i] += b; if (val[i] < infty<ll>) val[i] += b; } ll query_rec(int i, ll L, ll R, ll node_l, ll node_r, ll laz) { chmax(L, node_l), chmin(R, node_r); if (L >= R) return infty<ll>; if (node_l < L || R < node_r) { ll node_m = (node_l + node_r) / 2; ll ans = infty<ll>; if (dat[i].b != infty<ll>) chmin(ans, min(dat[i](X[L]), dat[i](X[R - 1])) + laz); laz += lazy[i]; chmin(ans, query_rec(2 * i + 0, L, R, node_l, node_m, laz)); chmin(ans, query_rec(2 * i + 1, L, R, node_m, node_r, laz)); return ans; } return (val[i] == infty<ll> ? infty<ll> : val[i] + laz); } };
#line 1 "convex/extended_lichao_2.hpp" // https://codeforces.com/blog/entry/86731) // chmin(A[x],ax+b), A[x]+=b, get range min template <bool MINIMIZE> struct Extended_LiChao_Tree_2 { // 入出力以外では minimize している struct F { ll a, b; F(ll a = 0, ll b = 0) : a(a), b(b) {} ll operator()(ll x) { return a * x + b; } void add(ll c) { if (b != infty<ll>) b += c; } }; vi X, lazy; vc<F> dat; vi val; int n, log, size; Extended_LiChao_Tree_2(vi X_) : X(X_) { UNIQUE(X); n = len(X), log = 1; while ((1 << log) < n) ++log; size = 1 << log; dat.assign(size << 1, F(0, infty<ll>)); lazy.assign(size << 1, 0); val.assign(size << 1, infty<ll>); } // O(logN). f(x) := min(f(x), ax+b). void chmin_line(ll a, ll b) { static_assert(MINIMIZE); chmin_line_rec(1, F(a, b), 0, n); } // O(logN). f(x) := max(f(x), ax+b). void chmax_line(ll a, ll b) { static_assert(!MINIMIZE); chmin_line_rec(1, F(-a, -b), 0, n); } // O(log^2N). f(x) := min(f(x), ax+b) for L<=x<R. // index ではなくて X[] の範囲. void chmin_segment(ll L, ll R, ll a, ll b) { static_assert(MINIMIZE); chmin_segment_rec(1, LB(X, L), LB(X, R), F(a, b), 0, n); } // O(log^2N). f(x) := max(f(x), ax+b) for L<=x<R. // index ではなくて X[] の範囲. void chmax_segment(ll L, ll R, ll a, ll b) { static_assert(!MINIMIZE); chmin_segment_rec(1, LB(X, L), LB(X, R), F(-a, -b), 0, n); } // O(1). f(x) := f(x)+b. void add_line(ll b) { if (!MINIMIZE) b = -b; add_segment_rec(1, 0, n, b, 0, n); } // O(log^2N). f(x) := f(x)+b for L<=x<R. // index ではなくて X[] の範囲. void add_segment(ll L, ll R, ll b) { if (!MINIMIZE) b = -b; add_segment_rec(1, LB(X, L), LB(X, R), b, 0, n); } ll query(ll L, ll R) { ll ans = query_rec(1, LB(X, L), LB(X, R), 0, n, 0); return (MINIMIZE ? ans : -ans); } private: void push(int i) { dat[2 * i + 0].add(lazy[i]), lazy[2 * i + 0] += lazy[i]; dat[2 * i + 1].add(lazy[i]), lazy[2 * i + 1] += lazy[i]; if (val[2 * i + 0] < infty<ll>) val[2 * i + 0] += lazy[i]; if (val[2 * i + 1] < infty<ll>) val[2 * i + 1] += lazy[i]; lazy[i] = 0; } void chmin_segment_rec(int i, ll xl, ll xr, F f, ll node_l, ll node_r) { chmax(xl, node_l), chmin(xr, node_r); if (xl >= xr) return; if (node_l < xl || xr < node_r) { ll node_m = (node_l + node_r) / 2; push(i); chmin_segment_rec(2 * i + 0, xl, xr, f, node_l, node_m); chmin_segment_rec(2 * i + 1, xl, xr, f, node_m, node_r); chmin(val[i], min(val[2 * i + 0], val[2 * i + 1])); return; } chmin_line_rec(i, f, node_l, node_r); } void chmin_line_rec(int i, F f, ll node_l, ll node_r) { F g = dat[i]; ll fl = f(X[node_l]), fr = f(X[node_r - 1]); ll gl = g(X[node_l]), gr = g(X[node_r - 1]); chmin(val[i], min(fl, fr)); if (fl <= gl && fr <= gr) { dat[i] = f; return; } if (fl >= gl && fr >= gr) { return; } ll node_m = (node_l + node_r) / 2; ll fm = f(X[node_m]), gm = g(X[node_m]); push(i); if (fm < gm && fl < gl) dat[i] = f, chmin_line_rec(2 * i + 1, g, node_m, node_r); elif (fm < gm && fl >= gl) dat[i] = f, chmin_line_rec(2 * i + 0, g, node_l, node_m); elif (fm >= gm && gl < fl) chmin_line_rec(2 * i + 1, f, node_m, node_r); elif (fm >= gm && gl >= fl) chmin_line_rec(2 * i + 0, f, node_l, node_m); } void add_segment_rec(int i, ll xl, ll xr, ll b, ll node_l, ll node_r) { chmax(xl, node_l), chmin(xr, node_r); if (xl >= xr) return; if (node_l < xl || xr < node_r) { ll node_m = (node_l + node_r) / 2; push(i); chmin_line_rec(2 * i + 0, dat[i], node_l, node_m); chmin_line_rec(2 * i + 1, dat[i], node_m, node_r); dat[i] = F(0, infty<ll>); add_segment_rec(2 * i + 0, xl, xr, b, node_l, node_m); add_segment_rec(2 * i + 1, xl, xr, b, node_m, node_r); val[i] = min(val[2 * i + 0], val[2 * i + 1]); chmin(val[i], dat[i](X[node_l])); chmin(val[i], dat[i](X[node_r - 1])); return; } dat[i].add(b), lazy[i] += b; if (val[i] < infty<ll>) val[i] += b; } ll query_rec(int i, ll L, ll R, ll node_l, ll node_r, ll laz) { chmax(L, node_l), chmin(R, node_r); if (L >= R) return infty<ll>; if (node_l < L || R < node_r) { ll node_m = (node_l + node_r) / 2; ll ans = infty<ll>; if (dat[i].b != infty<ll>) chmin(ans, min(dat[i](X[L]), dat[i](X[R - 1])) + laz); laz += lazy[i]; chmin(ans, query_rec(2 * i + 0, L, R, node_l, node_m, laz)); chmin(ans, query_rec(2 * i + 1, L, R, node_m, node_r, laz)); return ans; } return (val[i] == infty<ll> ? infty<ll> : val[i] + laz); } };