This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub maspypy/library
#define PROBLEM "https://judge.yosupo.jp/problem/aplusb" #include "my_template.hpp" #include "linalg/transpose.hpp" #include "other/equal_4square_sum_grid.hpp" void test() { FOR(H, 2, 20) { FOR(W, 2, 20) { if (H % 2 == 1 && W % 2 == 0) continue; int S0 = 2 * (H * W - 1); int L = S0, R = S0; if (H % 2 == 0 && W % 2 == 0) { L = S0, R = S0; } if (H % 4 == 2 && W % 2 == 1) { L = S0 - 1, R = S0 + 1; } if (H % 4 == 0 && W % 2 == 1) { L = S0 - 2, R = S0 + 2; } FOR(S, L, R + 1) { vvc<int> A = equal_4square_sum_grid(H, W, S); assert(len(A) == H && len(A[0]) == W); vc<int> used(H * W); FOR(x, H) FOR(y, W) used[A[x][y]]++; assert(MIN(used) == 1 && MAX(used) == 1); FOR(x, H - 1) FOR(y, W - 1) { assert(A[x][y] + A[x][y + 1] + A[x + 1][y] + A[x + 1][y + 1] == S); } } } } } void solve() { int x, y; cin >> x >> y; cout << x + y << "\n"; } signed main() { test(); solve(); }
#line 1 "test/1_mytest/equal_4square_sum_grid.cpp" #define PROBLEM "https://judge.yosupo.jp/problem/aplusb" #line 1 "my_template.hpp" #if defined(LOCAL) #include <my_template_compiled.hpp> #else // https://codeforces.com/blog/entry/96344 #pragma GCC optimize("Ofast,unroll-loops") // いまの CF だとこれ入れると動かない? // #pragma GCC target("avx2,popcnt") #include <bits/stdc++.h> using namespace std; using ll = long long; using u8 = uint8_t; using u16 = uint16_t; using u32 = uint32_t; using u64 = uint64_t; using i128 = __int128; using u128 = unsigned __int128; using f128 = __float128; template <class T> constexpr T infty = 0; template <> constexpr int infty<int> = 1'010'000'000; template <> constexpr ll infty<ll> = 2'020'000'000'000'000'000; template <> constexpr u32 infty<u32> = infty<int>; template <> constexpr u64 infty<u64> = infty<ll>; template <> constexpr i128 infty<i128> = i128(infty<ll>) * 2'000'000'000'000'000'000; template <> constexpr double infty<double> = infty<ll>; template <> constexpr long double infty<long double> = infty<ll>; using pi = pair<ll, ll>; using vi = vector<ll>; template <class T> using vc = vector<T>; template <class T> using vvc = vector<vc<T>>; template <class T> using vvvc = vector<vvc<T>>; template <class T> using vvvvc = vector<vvvc<T>>; template <class T> using vvvvvc = vector<vvvvc<T>>; template <class T> using pq = priority_queue<T>; template <class T> using pqg = priority_queue<T, vector<T>, greater<T>>; #define vv(type, name, h, ...) vector<vector<type>> name(h, vector<type>(__VA_ARGS__)) #define vvv(type, name, h, w, ...) vector<vector<vector<type>>> name(h, vector<vector<type>>(w, vector<type>(__VA_ARGS__))) #define vvvv(type, name, a, b, c, ...) \ vector<vector<vector<vector<type>>>> name(a, vector<vector<vector<type>>>(b, vector<vector<type>>(c, vector<type>(__VA_ARGS__)))) // https://trap.jp/post/1224/ #define FOR1(a) for (ll _ = 0; _ < ll(a); ++_) #define FOR2(i, a) for (ll i = 0; i < ll(a); ++i) #define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i) #define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c)) #define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i) #define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i) #define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i) #define overload4(a, b, c, d, e, ...) e #define overload3(a, b, c, d, ...) d #define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__) #define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__) #define FOR_subset(t, s) for (ll t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s))) #define all(x) x.begin(), x.end() #define len(x) ll(x.size()) #define elif else if #define eb emplace_back #define mp make_pair #define mt make_tuple #define fi first #define se second #define stoi stoll int popcnt(int x) { return __builtin_popcount(x); } int popcnt(u32 x) { return __builtin_popcount(x); } int popcnt(ll x) { return __builtin_popcountll(x); } int popcnt(u64 x) { return __builtin_popcountll(x); } int popcnt_sgn(int x) { return (__builtin_parity(x) & 1 ? -1 : 1); } int popcnt_sgn(u32 x) { return (__builtin_parity(x) & 1 ? -1 : 1); } int popcnt_sgn(ll x) { return (__builtin_parity(x) & 1 ? -1 : 1); } int popcnt_sgn(u64 x) { return (__builtin_parity(x) & 1 ? -1 : 1); } // (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2) int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); } int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); } int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); } int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); } // (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2) int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); } int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); } int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); } int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); } template <typename T> T kth_bit(int k) { return T(1) << k; } template <typename T> bool has_kth_bit(T x, int k) { return x >> k & 1; } template <typename T> T floor(T a, T b) { return a / b - (a % b && (a ^ b) < 0); } template <typename T> T ceil(T x, T y) { return floor(x + y - 1, y); } template <typename T> T bmod(T x, T y) { return x - y * floor(x, y); } template <typename T> pair<T, T> divmod(T x, T y) { T q = floor(x, y); return {q, x - q * y}; } template <typename T, typename U> T SUM(const vector<U> &A) { T sm = 0; for (auto &&a: A) sm += a; return sm; } #define MIN(v) *min_element(all(v)) #define MAX(v) *max_element(all(v)) #define LB(c, x) distance((c).begin(), lower_bound(all(c), (x))) #define UB(c, x) distance((c).begin(), upper_bound(all(c), (x))) #define UNIQUE(x) sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit() template <typename T> T POP(deque<T> &que) { T a = que.front(); que.pop_front(); return a; } template <typename T> T POP(pq<T> &que) { T a = que.top(); que.pop(); return a; } template <typename T> T POP(pqg<T> &que) { T a = que.top(); que.pop(); return a; } template <typename T> T POP(vc<T> &que) { T a = que.back(); que.pop_back(); return a; } template <typename F> ll binary_search(F check, ll ok, ll ng, bool check_ok = true) { if (check_ok) assert(check(ok)); while (abs(ok - ng) > 1) { auto x = (ng + ok) / 2; (check(x) ? ok : ng) = x; } return ok; } template <typename F> double binary_search_real(F check, double ok, double ng, int iter = 100) { FOR(iter) { double x = (ok + ng) / 2; (check(x) ? ok : ng) = x; } return (ok + ng) / 2; } template <class T, class S> inline bool chmax(T &a, const S &b) { return (a < b ? a = b, 1 : 0); } template <class T, class S> inline bool chmin(T &a, const S &b) { return (a > b ? a = b, 1 : 0); } // ? は -1 vc<int> s_to_vi(const string &S, char first_char) { vc<int> A(S.size()); FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); } return A; } template <typename T, typename U> vector<T> cumsum(vector<U> &A, int off = 1) { int N = A.size(); vector<T> B(N + 1); FOR(i, N) { B[i + 1] = B[i] + A[i]; } if (off == 0) B.erase(B.begin()); return B; } // stable sort template <typename T> vector<int> argsort(const vector<T> &A) { vector<int> ids(len(A)); iota(all(ids), 0); sort(all(ids), [&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); }); return ids; } // A[I[0]], A[I[1]], ... template <typename T> vc<T> rearrange(const vc<T> &A, const vc<int> &I) { vc<T> B(len(I)); FOR(i, len(I)) B[i] = A[I[i]]; return B; } template <typename T, typename... Vectors> void concat(vc<T> &first, const Vectors &... others) { vc<T> &res = first; (res.insert(res.end(), others.begin(), others.end()), ...); } #endif #line 3 "test/1_mytest/equal_4square_sum_grid.cpp" #line 1 "linalg/transpose.hpp" template <typename VC> vc<VC> transpose(const vc<VC>& A, int H = -1, int W = -1) { if (H == -1) { H = len(A), W = (len(A) == 0 ? 0 : len(A[0])); } if (H == 0) return {}; vc<VC> B(W, VC(H, A[0][0])); FOR(x, H) FOR(y, W) B[y][x] = A[x][y]; return B; } #line 1 "other/equal_4square_sum_grid.hpp" // https://atcoder.jp/contests/tupc2023/tasks/tupc2023_k // [0,HW-1]の順列ですべての(2,2)正方形の和がS, 解いた場合. // 一般に解いたわけではない. mod HW では解けている. // (even,even) は S が確定. 他は微調整はできるという感じ. vvc<int> equal_4square_sum_grid(int H, int W, int S) { assert(H >= 2 && W >= 2); int S0 = (H * W - 1) * 2; if (H % 2 == 1 && W % 2 == 0) { vvc<int> A = equal_4square_sum_grid(W, H, S); A = transpose(A); return A; } // 解いていない場合 if (H % 2 == 0 && W % 2 == 0) assert(S0 - 3 <= S && S <= S0 + 3); if (W % 2 == 1 && H % 4 == 2) { assert(S0 - 1 <= S && S <= S0 + 1); } if (W % 2 == 1 && H % 4 == 0) { assert(S0 - 2 <= S && S <= S0 + 2); } if (S == S0 + 1 || S == S0 - 2) { vvc<int> A = equal_4square_sum_grid(H, W, 2 * S0 - S); FOR(x, H) FOR(y, W) A[x][y] = H * W - 1 - A[x][y]; return A; } if (S == S0) { vv(int, A, H, W); FOR(j, W) A[j % 2][j] = j, A[(j + 1) % 2][j] = H * W - 1 - j; FOR(i, 2, H) FOR(j, W) { if ((i + j) % 2 == 0) A[i][j] = A[i - 2][j] + W; if ((i + j) % 2 == 1) A[i][j] = A[i - 2][j] - W; } return A; } if (H % 2 == 0 && W % 2 == 0) return {}; // 解なし if (S == S0 - 1) { vv(int, A, H, W); auto nxt = [&](int p) -> int { return (p >= H * W / 2 ? H * W - 1 - p : H * W - 2 - p); }; int p = H * W - 1; FOR(x, H) FOR(y, W) { A[x][y] = p, p = nxt(p); } return A; } assert(W % 2 == 1 && H % 4 == 0 && S == S0 + 2); int n = H / 4; vc<int> tmp; FOR(i, 2 * n * W) { if (i % 2 == 0) tmp.eb(2 * i); if (i % 2 == 1) tmp.eb(H * W - 2 * i); } FOR(i, n * W) { if (i % 2 == 0) tmp.eb(2 * i + 1); if (i % 2 == 1) tmp.eb(H * W - 2 * i - 1); } FOR(i, 3 * n * W, 4 * n * W) { tmp.eb(H * W - tmp[i - n * W]); } int p = 0; vv(int, A, H, W); FOR(x, H) FOR(y, W) A[x][y] = tmp[p++]; if (n % 2 == 0) { FOR(x, 3 * n, 4 * n) reverse(all(A[x])); } return A; } #line 6 "test/1_mytest/equal_4square_sum_grid.cpp" void test() { FOR(H, 2, 20) { FOR(W, 2, 20) { if (H % 2 == 1 && W % 2 == 0) continue; int S0 = 2 * (H * W - 1); int L = S0, R = S0; if (H % 2 == 0 && W % 2 == 0) { L = S0, R = S0; } if (H % 4 == 2 && W % 2 == 1) { L = S0 - 1, R = S0 + 1; } if (H % 4 == 0 && W % 2 == 1) { L = S0 - 2, R = S0 + 2; } FOR(S, L, R + 1) { vvc<int> A = equal_4square_sum_grid(H, W, S); assert(len(A) == H && len(A[0]) == W); vc<int> used(H * W); FOR(x, H) FOR(y, W) used[A[x][y]]++; assert(MIN(used) == 1 && MAX(used) == 1); FOR(x, H - 1) FOR(y, W - 1) { assert(A[x][y] + A[x][y + 1] + A[x + 1][y] + A[x + 1][y + 1] == S); } } } } } void solve() { int x, y; cin >> x >> y; cout << x + y << "\n"; } signed main() { test(); solve(); }