This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub maspypy/library
#include "poly/convolution_fft.hpp"
#include "poly/fft.hpp" template <typename R> vc<double> convolution_fft(const vc<R>& a, const vc<R>& b) { using C = CFFT::C; int need = (int)a.size() + (int)b.size() - 1; int nbase = 1; while ((1 << nbase) < need) nbase++; CFFT::ensure_base(nbase); int sz = 1 << nbase; vector<C> fa(sz); for (int i = 0; i < sz; i++) { double x = (i < (int)a.size() ? a[i] : 0); double y = (i < (int)b.size() ? b[i] : 0); fa[i] = C(x, y); } CFFT::fft(fa, sz); C r(0, -0.25 / (sz >> 1)), s(0, 1), t(0.5, 0); for (int i = 0; i <= (sz >> 1); i++) { int j = (sz - i) & (sz - 1); C z = (fa[j] * fa[j] - (fa[i] * fa[i]).conj()) * r; fa[j] = (fa[i] * fa[i] - (fa[j] * fa[j]).conj()) * r; fa[i] = z; } for (int i = 0; i < (sz >> 1); i++) { C A0 = (fa[i] + fa[i + (sz >> 1)]) * t; C A1 = (fa[i] - fa[i + (sz >> 1)]) * t * CFFT::rts[(sz >> 1) + i]; fa[i] = A0 + A1 * s; } CFFT::fft(fa, sz >> 1); vector<double> ret(need); for (int i = 0; i < need; i++) { ret[i] = (i & 1 ? fa[i >> 1].y : fa[i >> 1].x); } return ret; }
#line 1 "poly/fft.hpp" namespace CFFT { using real = double; struct C { real x, y; C() : x(0), y(0) {} C(real x, real y) : x(x), y(y) {} inline C operator+(const C& c) const { return C(x + c.x, y + c.y); } inline C operator-(const C& c) const { return C(x - c.x, y - c.y); } inline C operator*(const C& c) const { return C(x * c.x - y * c.y, x * c.y + y * c.x); } inline C conj() const { return C(x, -y); } }; const real PI = acosl(-1); int base = 1; vector<C> rts = {{0, 0}, {1, 0}}; vector<int> rev = {0, 1}; void ensure_base(int nbase) { if (nbase <= base) return; rev.resize(1 << nbase); rts.resize(1 << nbase); for (int i = 0; i < (1 << nbase); i++) { rev[i] = (rev[i >> 1] >> 1) + ((i & 1) << (nbase - 1)); } while (base < nbase) { real angle = PI * 2.0 / (1 << (base + 1)); for (int i = 1 << (base - 1); i < (1 << base); i++) { rts[i << 1] = rts[i]; real angle_i = angle * (2 * i + 1 - (1 << base)); rts[(i << 1) + 1] = C(cos(angle_i), sin(angle_i)); } ++base; } } void fft(vector<C>& a, int n) { assert((n & (n - 1)) == 0); int zeros = __builtin_ctz(n); ensure_base(zeros); int shift = base - zeros; for (int i = 0; i < n; i++) { if (i < (rev[i] >> shift)) { swap(a[i], a[rev[i] >> shift]); } } for (int k = 1; k < n; k <<= 1) { for (int i = 0; i < n; i += 2 * k) { for (int j = 0; j < k; j++) { C z = a[i + j + k] * rts[j + k]; a[i + j + k] = a[i + j] - z; a[i + j] = a[i + j] + z; } } } } } // namespace CFFT #line 2 "poly/convolution_fft.hpp" template <typename R> vc<double> convolution_fft(const vc<R>& a, const vc<R>& b) { using C = CFFT::C; int need = (int)a.size() + (int)b.size() - 1; int nbase = 1; while ((1 << nbase) < need) nbase++; CFFT::ensure_base(nbase); int sz = 1 << nbase; vector<C> fa(sz); for (int i = 0; i < sz; i++) { double x = (i < (int)a.size() ? a[i] : 0); double y = (i < (int)b.size() ? b[i] : 0); fa[i] = C(x, y); } CFFT::fft(fa, sz); C r(0, -0.25 / (sz >> 1)), s(0, 1), t(0.5, 0); for (int i = 0; i <= (sz >> 1); i++) { int j = (sz - i) & (sz - 1); C z = (fa[j] * fa[j] - (fa[i] * fa[i]).conj()) * r; fa[j] = (fa[i] * fa[i] - (fa[j] * fa[j]).conj()) * r; fa[i] = z; } for (int i = 0; i < (sz >> 1); i++) { C A0 = (fa[i] + fa[i + (sz >> 1)]) * t; C A1 = (fa[i] - fa[i + (sz >> 1)]) * t * CFFT::rts[(sz >> 1) + i]; fa[i] = A0 + A1 * s; } CFFT::fft(fa, sz >> 1); vector<double> ret(need); for (int i = 0; i < need; i++) { ret[i] = (i & 1 ? fa[i >> 1].y : fa[i >> 1].x); } return ret; }