This documentation is automatically generated by online-judge-tools/verification-helper
#include "poly/composition_f_ex_minus_1.hpp"
#include "poly/poly_taylor_shift.hpp"
#include "poly/composition_f_ex.hpp"
// f(1-e^x)
template <typename mint>
vc<mint> composition_f_ex_minus_1(vc<mint> f) {
f = poly_taylor_shift<mint>(f, -1);
return composition_f_ex<mint>(f);
}
#line 1 "poly/composition_f_ex_minus_1.hpp"
#line 2 "poly/poly_taylor_shift.hpp"
#line 2 "nt/primetable.hpp"
template <typename T = int>
vc<T> primetable(int LIM) {
++LIM;
const int S = 32768;
static int done = 2;
static vc<T> primes = {2}, sieve(S + 1);
if (done < LIM) {
done = LIM;
primes = {2}, sieve.assign(S + 1, 0);
const int R = LIM / 2;
primes.reserve(int(LIM / log(LIM) * 1.1));
vc<pair<int, int>> cp;
for (int i = 3; i <= S; i += 2) {
if (!sieve[i]) {
cp.eb(i, i * i / 2);
for (int j = i * i; j <= S; j += 2 * i) sieve[j] = 1;
}
}
for (int L = 1; L <= R; L += S) {
array<bool, S> block{};
for (auto& [p, idx]: cp)
for (int i = idx; i < S + L; idx = (i += p)) block[i - L] = 1;
FOR(i, min(S, R - L)) if (!block[i]) primes.eb((L + i) * 2 + 1);
}
}
int k = LB(primes, LIM + 1);
return {primes.begin(), primes.begin() + k};
}
#line 3 "mod/powertable.hpp"
// a^0, ..., a^N
template <typename mint>
vc<mint> powertable_1(mint a, ll N) {
// table of a^i
vc<mint> f(N + 1, 1);
FOR(i, N) f[i + 1] = a * f[i];
return f;
}
// 0^e, ..., N^e
template <typename mint>
vc<mint> powertable_2(ll e, ll N) {
auto primes = primetable(N);
vc<mint> f(N + 1, 1);
f[0] = mint(0).pow(e);
for (auto&& p: primes) {
if (p > N) break;
mint xp = mint(p).pow(e);
ll pp = p;
while (pp <= N) {
ll i = pp;
while (i <= N) {
f[i] *= xp;
i += pp;
}
pp *= p;
}
}
return f;
}
#line 2 "mod/modint_common.hpp"
struct has_mod_impl {
template <class T>
static auto check(T &&x) -> decltype(x.get_mod(), std::true_type{});
template <class T>
static auto check(...) -> std::false_type;
};
template <class T>
class has_mod : public decltype(has_mod_impl::check<T>(std::declval<T>())) {};
template <typename mint>
mint inv(int n) {
static const int mod = mint::get_mod();
static vector<mint> dat = {0, 1};
assert(0 <= n);
if (n >= mod) n %= mod;
while (len(dat) <= n) {
int k = len(dat);
int q = (mod + k - 1) / k;
dat.eb(dat[k * q - mod] * mint::raw(q));
}
return dat[n];
}
template <typename mint>
mint fact(int n) {
static const int mod = mint::get_mod();
assert(0 <= n && n < mod);
static vector<mint> dat = {1, 1};
while (len(dat) <= n) dat.eb(dat[len(dat) - 1] * mint::raw(len(dat)));
return dat[n];
}
template <typename mint>
mint fact_inv(int n) {
static vector<mint> dat = {1, 1};
if (n < 0) return mint(0);
while (len(dat) <= n) dat.eb(dat[len(dat) - 1] * inv<mint>(len(dat)));
return dat[n];
}
template <class mint, class... Ts>
mint fact_invs(Ts... xs) {
return (mint(1) * ... * fact_inv<mint>(xs));
}
template <typename mint, class Head, class... Tail>
mint multinomial(Head &&head, Tail &&... tail) {
return fact<mint>(head) * fact_invs<mint>(std::forward<Tail>(tail)...);
}
template <typename mint>
mint C_dense(int n, int k) {
assert(n >= 0);
if (k < 0 || n < k) return 0;
static vvc<mint> C;
static int H = 0, W = 0;
auto calc = [&](int i, int j) -> mint {
if (i == 0) return (j == 0 ? mint(1) : mint(0));
return C[i - 1][j] + (j ? C[i - 1][j - 1] : 0);
};
if (W <= k) {
FOR(i, H) {
C[i].resize(k + 1);
FOR(j, W, k + 1) { C[i][j] = calc(i, j); }
}
W = k + 1;
}
if (H <= n) {
C.resize(n + 1);
FOR(i, H, n + 1) {
C[i].resize(W);
FOR(j, W) { C[i][j] = calc(i, j); }
}
H = n + 1;
}
return C[n][k];
}
template <typename mint, bool large = false, bool dense = false>
mint C(ll n, ll k) {
assert(n >= 0);
if (k < 0 || n < k) return 0;
if constexpr (dense) return C_dense<mint>(n, k);
if constexpr (!large) return multinomial<mint>(n, k, n - k);
k = min(k, n - k);
mint x(1);
FOR(i, k) x *= mint(n - i);
return x * fact_inv<mint>(k);
}
template <typename mint, bool large = false>
mint C_inv(ll n, ll k) {
assert(n >= 0);
assert(0 <= k && k <= n);
if (!large) return fact_inv<mint>(n) * fact<mint>(k) * fact<mint>(n - k);
return mint(1) / C<mint, 1>(n, k);
}
// [x^d](1-x)^{-n}
template <typename mint, bool large = false, bool dense = false>
mint C_negative(ll n, ll d) {
assert(n >= 0);
if (d < 0) return mint(0);
if (n == 0) { return (d == 0 ? mint(1) : mint(0)); }
return C<mint, large, dense>(n + d - 1, d);
}
#line 3 "mod/modint.hpp"
template <int mod>
struct modint {
static constexpr u32 umod = u32(mod);
static_assert(umod < u32(1) << 31);
u32 val;
static modint raw(u32 v) {
modint x;
x.val = v;
return x;
}
constexpr modint() : val(0) {}
constexpr modint(u32 x) : val(x % umod) {}
constexpr modint(u64 x) : val(x % umod) {}
constexpr modint(u128 x) : val(x % umod) {}
constexpr modint(int x) : val((x %= mod) < 0 ? x + mod : x){};
constexpr modint(ll x) : val((x %= mod) < 0 ? x + mod : x){};
constexpr modint(i128 x) : val((x %= mod) < 0 ? x + mod : x){};
bool operator<(const modint &other) const { return val < other.val; }
modint &operator+=(const modint &p) {
if ((val += p.val) >= umod) val -= umod;
return *this;
}
modint &operator-=(const modint &p) {
if ((val += umod - p.val) >= umod) val -= umod;
return *this;
}
modint &operator*=(const modint &p) {
val = u64(val) * p.val % umod;
return *this;
}
modint &operator/=(const modint &p) {
*this *= p.inverse();
return *this;
}
modint operator-() const { return modint::raw(val ? mod - val : u32(0)); }
modint operator+(const modint &p) const { return modint(*this) += p; }
modint operator-(const modint &p) const { return modint(*this) -= p; }
modint operator*(const modint &p) const { return modint(*this) *= p; }
modint operator/(const modint &p) const { return modint(*this) /= p; }
bool operator==(const modint &p) const { return val == p.val; }
bool operator!=(const modint &p) const { return val != p.val; }
modint inverse() const {
int a = val, b = mod, u = 1, v = 0, t;
while (b > 0) {
t = a / b;
swap(a -= t * b, b), swap(u -= t * v, v);
}
return modint(u);
}
modint pow(ll n) const {
if (n < 0) return inverse().pow(-n);
assert(n >= 0);
modint ret(1), mul(val);
while (n > 0) {
if (n & 1) ret *= mul;
mul *= mul;
n >>= 1;
}
return ret;
}
static constexpr int get_mod() { return mod; }
// (n, r), r は 1 の 2^n 乗根
static constexpr pair<int, int> ntt_info() {
if (mod == 120586241) return {20, 74066978};
if (mod == 167772161) return {25, 17};
if (mod == 469762049) return {26, 30};
if (mod == 754974721) return {24, 362};
if (mod == 880803841) return {23, 211};
if (mod == 943718401) return {22, 663003469};
if (mod == 998244353) return {23, 31};
if (mod == 1004535809) return {21, 582313106};
if (mod == 1012924417) return {21, 368093570};
return {-1, -1};
}
static constexpr bool can_ntt() { return ntt_info().fi != -1; }
};
#ifdef FASTIO
template <int mod>
void rd(modint<mod> &x) {
fastio::rd(x.val);
x.val %= mod;
// assert(0 <= x.val && x.val < mod);
}
template <int mod>
void wt(modint<mod> x) {
fastio::wt(x.val);
}
#endif
using modint107 = modint<1000000007>;
using modint998 = modint<998244353>;
#line 2 "mod/mod_inv.hpp"
// long でも大丈夫
// (val * x - 1) が mod の倍数になるようにする
// 特に mod=0 なら x=0 が満たす
ll mod_inv(ll val, ll mod) {
if (mod == 0) return 0;
mod = abs(mod);
val %= mod;
if (val < 0) val += mod;
ll a = val, b = mod, u = 1, v = 0, t;
while (b > 0) {
t = a / b;
swap(a -= t * b, b), swap(u -= t * v, v);
}
if (u < 0) u += mod;
return u;
}
#line 2 "mod/crt3.hpp"
constexpr u32 mod_pow_constexpr(u64 a, u64 n, u32 mod) {
a %= mod;
u64 res = 1;
FOR(32) {
if (n & 1) res = res * a % mod;
a = a * a % mod, n /= 2;
}
return res;
}
template <typename T, u32 p0, u32 p1>
T CRT2(u64 a0, u64 a1) {
static_assert(p0 < p1);
static constexpr u64 x0_1 = mod_pow_constexpr(p0, p1 - 2, p1);
u64 c = (a1 - a0 + p1) * x0_1 % p1;
return a0 + c * p0;
}
template <typename T, u32 p0, u32 p1, u32 p2>
T CRT3(u64 a0, u64 a1, u64 a2) {
static_assert(p0 < p1 && p1 < p2);
static constexpr u64 x1 = mod_pow_constexpr(p0, p1 - 2, p1);
static constexpr u64 x2 = mod_pow_constexpr(u64(p0) * p1 % p2, p2 - 2, p2);
static constexpr u64 p01 = u64(p0) * p1;
u64 c = (a1 - a0 + p1) * x1 % p1;
u64 ans_1 = a0 + c * p0;
c = (a2 - ans_1 % p2 + p2) * x2 % p2;
return T(ans_1) + T(c) * T(p01);
}
template <typename T, u32 p0, u32 p1, u32 p2, u32 p3>
T CRT4(u64 a0, u64 a1, u64 a2, u64 a3) {
static_assert(p0 < p1 && p1 < p2 && p2 < p3);
static constexpr u64 x1 = mod_pow_constexpr(p0, p1 - 2, p1);
static constexpr u64 x2 = mod_pow_constexpr(u64(p0) * p1 % p2, p2 - 2, p2);
static constexpr u64 x3 = mod_pow_constexpr(u64(p0) * p1 % p3 * p2 % p3, p3 - 2, p3);
static constexpr u64 p01 = u64(p0) * p1;
u64 c = (a1 - a0 + p1) * x1 % p1;
u64 ans_1 = a0 + c * p0;
c = (a2 - ans_1 % p2 + p2) * x2 % p2;
u128 ans_2 = ans_1 + c * static_cast<u128>(p01);
c = (a3 - ans_2 % p3 + p3) * x3 % p3;
return T(ans_2) + T(c) * T(p01) * T(p2);
}
template <typename T, u32 p0, u32 p1, u32 p2, u32 p3, u32 p4>
T CRT5(u64 a0, u64 a1, u64 a2, u64 a3, u64 a4) {
static_assert(p0 < p1 && p1 < p2 && p2 < p3 && p3 < p4);
static constexpr u64 x1 = mod_pow_constexpr(p0, p1 - 2, p1);
static constexpr u64 x2 = mod_pow_constexpr(u64(p0) * p1 % p2, p2 - 2, p2);
static constexpr u64 x3 = mod_pow_constexpr(u64(p0) * p1 % p3 * p2 % p3, p3 - 2, p3);
static constexpr u64 x4 = mod_pow_constexpr(u64(p0) * p1 % p4 * p2 % p4 * p3 % p4, p4 - 2, p4);
static constexpr u64 p01 = u64(p0) * p1;
static constexpr u64 p23 = u64(p2) * p3;
u64 c = (a1 - a0 + p1) * x1 % p1;
u64 ans_1 = a0 + c * p0;
c = (a2 - ans_1 % p2 + p2) * x2 % p2;
u128 ans_2 = ans_1 + c * static_cast<u128>(p01);
c = static_cast<u64>(a3 - ans_2 % p3 + p3) * x3 % p3;
u128 ans_3 = ans_2 + static_cast<u128>(c * p2) * p01;
c = static_cast<u64>(a4 - ans_3 % p4 + p4) * x4 % p4;
return T(ans_3) + T(c) * T(p01) * T(p23);
}
#line 2 "poly/convolution_naive.hpp"
template <class T, typename enable_if<!has_mod<T>::value>::type* = nullptr>
vc<T> convolution_naive(const vc<T>& a, const vc<T>& b) {
int n = int(a.size()), m = int(b.size());
if (n > m) return convolution_naive<T>(b, a);
if (n == 0) return {};
vector<T> ans(n + m - 1);
FOR(i, n) FOR(j, m) ans[i + j] += a[i] * b[j];
return ans;
}
template <class T, typename enable_if<has_mod<T>::value>::type* = nullptr>
vc<T> convolution_naive(const vc<T>& a, const vc<T>& b) {
int n = int(a.size()), m = int(b.size());
if (n > m) return convolution_naive<T>(b, a);
if (n == 0) return {};
vc<T> ans(n + m - 1);
if (n <= 16 && (T::get_mod() < (1 << 30))) {
for (int k = 0; k < n + m - 1; ++k) {
int s = max(0, k - m + 1);
int t = min(n, k + 1);
u64 sm = 0;
for (int i = s; i < t; ++i) { sm += u64(a[i].val) * (b[k - i].val); }
ans[k] = sm;
}
} else {
for (int k = 0; k < n + m - 1; ++k) {
int s = max(0, k - m + 1);
int t = min(n, k + 1);
u128 sm = 0;
for (int i = s; i < t; ++i) { sm += u64(a[i].val) * (b[k - i].val); }
ans[k] = T::raw(sm % T::get_mod());
}
}
return ans;
}
#line 2 "poly/convolution_karatsuba.hpp"
// 任意の環でできる
template <typename T>
vc<T> convolution_karatsuba(const vc<T>& f, const vc<T>& g) {
const int thresh = 30;
if (min(len(f), len(g)) <= thresh) return convolution_naive(f, g);
int n = max(len(f), len(g));
int m = ceil(n, 2);
vc<T> f1, f2, g1, g2;
if (len(f) < m) f1 = f;
if (len(f) >= m) f1 = {f.begin(), f.begin() + m};
if (len(f) >= m) f2 = {f.begin() + m, f.end()};
if (len(g) < m) g1 = g;
if (len(g) >= m) g1 = {g.begin(), g.begin() + m};
if (len(g) >= m) g2 = {g.begin() + m, g.end()};
vc<T> a = convolution_karatsuba(f1, g1);
vc<T> b = convolution_karatsuba(f2, g2);
FOR(i, len(f2)) f1[i] += f2[i];
FOR(i, len(g2)) g1[i] += g2[i];
vc<T> c = convolution_karatsuba(f1, g1);
vc<T> F(len(f) + len(g) - 1);
assert(2 * m + len(b) <= len(F));
FOR(i, len(a)) F[i] += a[i], c[i] -= a[i];
FOR(i, len(b)) F[2 * m + i] += b[i], c[i] -= b[i];
if (c.back() == T(0)) c.pop_back();
FOR(i, len(c)) if (c[i] != T(0)) F[m + i] += c[i];
return F;
}
#line 2 "poly/ntt.hpp"
template <class mint>
void ntt(vector<mint>& a, bool inverse) {
assert(mint::can_ntt());
const int rank2 = mint::ntt_info().fi;
const int mod = mint::get_mod();
static array<mint, 30> root, iroot;
static array<mint, 30> rate2, irate2;
static array<mint, 30> rate3, irate3;
assert(rank2 != -1 && len(a) <= (1 << max(0, rank2)));
static bool prepared = 0;
if (!prepared) {
prepared = 1;
root[rank2] = mint::ntt_info().se;
iroot[rank2] = mint(1) / root[rank2];
FOR_R(i, rank2) {
root[i] = root[i + 1] * root[i + 1];
iroot[i] = iroot[i + 1] * iroot[i + 1];
}
mint prod = 1, iprod = 1;
for (int i = 0; i <= rank2 - 2; i++) {
rate2[i] = root[i + 2] * prod;
irate2[i] = iroot[i + 2] * iprod;
prod *= iroot[i + 2];
iprod *= root[i + 2];
}
prod = 1, iprod = 1;
for (int i = 0; i <= rank2 - 3; i++) {
rate3[i] = root[i + 3] * prod;
irate3[i] = iroot[i + 3] * iprod;
prod *= iroot[i + 3];
iprod *= root[i + 3];
}
}
int n = int(a.size());
int h = topbit(n);
assert(n == 1 << h);
if (!inverse) {
int len = 0;
while (len < h) {
if (h - len == 1) {
int p = 1 << (h - len - 1);
mint rot = 1;
FOR(s, 1 << len) {
int offset = s << (h - len);
FOR(i, p) {
auto l = a[i + offset];
auto r = a[i + offset + p] * rot;
a[i + offset] = l + r;
a[i + offset + p] = l - r;
}
rot *= rate2[topbit(~s & -~s)];
}
len++;
} else {
int p = 1 << (h - len - 2);
mint rot = 1, imag = root[2];
for (int s = 0; s < (1 << len); s++) {
mint rot2 = rot * rot;
mint rot3 = rot2 * rot;
int offset = s << (h - len);
for (int i = 0; i < p; i++) {
u64 mod2 = u64(mod) * mod;
u64 a0 = a[i + offset].val;
u64 a1 = u64(a[i + offset + p].val) * rot.val;
u64 a2 = u64(a[i + offset + 2 * p].val) * rot2.val;
u64 a3 = u64(a[i + offset + 3 * p].val) * rot3.val;
u64 a1na3imag = (a1 + mod2 - a3) % mod * imag.val;
u64 na2 = mod2 - a2;
a[i + offset] = a0 + a2 + a1 + a3;
a[i + offset + 1 * p] = a0 + a2 + (2 * mod2 - (a1 + a3));
a[i + offset + 2 * p] = a0 + na2 + a1na3imag;
a[i + offset + 3 * p] = a0 + na2 + (mod2 - a1na3imag);
}
rot *= rate3[topbit(~s & -~s)];
}
len += 2;
}
}
} else {
mint coef = mint(1) / mint(len(a));
FOR(i, len(a)) a[i] *= coef;
int len = h;
while (len) {
if (len == 1) {
int p = 1 << (h - len);
mint irot = 1;
FOR(s, 1 << (len - 1)) {
int offset = s << (h - len + 1);
FOR(i, p) {
u64 l = a[i + offset].val;
u64 r = a[i + offset + p].val;
a[i + offset] = l + r;
a[i + offset + p] = (mod + l - r) * irot.val;
}
irot *= irate2[topbit(~s & -~s)];
}
len--;
} else {
int p = 1 << (h - len);
mint irot = 1, iimag = iroot[2];
FOR(s, (1 << (len - 2))) {
mint irot2 = irot * irot;
mint irot3 = irot2 * irot;
int offset = s << (h - len + 2);
for (int i = 0; i < p; i++) {
u64 a0 = a[i + offset + 0 * p].val;
u64 a1 = a[i + offset + 1 * p].val;
u64 a2 = a[i + offset + 2 * p].val;
u64 a3 = a[i + offset + 3 * p].val;
u64 x = (mod + a2 - a3) * iimag.val % mod;
a[i + offset] = a0 + a1 + a2 + a3;
a[i + offset + 1 * p] = (a0 + mod - a1 + x) * irot.val;
a[i + offset + 2 * p] = (a0 + a1 + 2 * mod - a2 - a3) * irot2.val;
a[i + offset + 3 * p] = (a0 + 2 * mod - a1 - x) * irot3.val;
}
irot *= irate3[topbit(~s & -~s)];
}
len -= 2;
}
}
}
}
#line 8 "poly/convolution.hpp"
template <class mint>
vector<mint> convolution_ntt(vector<mint> a, vector<mint> b) {
if (a.empty() || b.empty()) return {};
int n = int(a.size()), m = int(b.size());
int sz = 1;
while (sz < n + m - 1) sz *= 2;
// sz = 2^k のときの高速化。分割統治的なやつで損しまくるので。
if ((n + m - 3) <= sz / 2) {
auto a_last = a.back(), b_last = b.back();
a.pop_back(), b.pop_back();
auto c = convolution(a, b);
c.resize(n + m - 1);
c[n + m - 2] = a_last * b_last;
FOR(i, len(a)) c[i + len(b)] += a[i] * b_last;
FOR(i, len(b)) c[i + len(a)] += b[i] * a_last;
return c;
}
a.resize(sz), b.resize(sz);
bool same = a == b;
ntt(a, 0);
if (same) {
b = a;
} else {
ntt(b, 0);
}
FOR(i, sz) a[i] *= b[i];
ntt(a, 1);
a.resize(n + m - 1);
return a;
}
template <typename mint>
vector<mint> convolution_garner(const vector<mint>& a, const vector<mint>& b) {
int n = len(a), m = len(b);
if (!n || !m) return {};
static constexpr int p0 = 167772161;
static constexpr int p1 = 469762049;
static constexpr int p2 = 754974721;
using mint0 = modint<p0>;
using mint1 = modint<p1>;
using mint2 = modint<p2>;
vc<mint0> a0(n), b0(m);
vc<mint1> a1(n), b1(m);
vc<mint2> a2(n), b2(m);
FOR(i, n) a0[i] = a[i].val, a1[i] = a[i].val, a2[i] = a[i].val;
FOR(i, m) b0[i] = b[i].val, b1[i] = b[i].val, b2[i] = b[i].val;
auto c0 = convolution_ntt<mint0>(a0, b0);
auto c1 = convolution_ntt<mint1>(a1, b1);
auto c2 = convolution_ntt<mint2>(a2, b2);
vc<mint> c(len(c0));
FOR(i, n + m - 1) { c[i] = CRT3<mint, p0, p1, p2>(c0[i].val, c1[i].val, c2[i].val); }
return c;
}
vector<ll> convolution(vector<ll> a, vector<ll> b) {
int n = len(a), m = len(b);
if (!n || !m) return {};
if (min(n, m) <= 2500) return convolution_naive(a, b);
ll mi_a = MIN(a), mi_b = MIN(b);
for (auto& x: a) x -= mi_a;
for (auto& x: b) x -= mi_b;
assert(MAX(a) * MAX(b) <= 1e18);
auto Ac = cumsum<ll>(a), Bc = cumsum<ll>(b);
vi res(n + m - 1);
for (int k = 0; k < n + m - 1; ++k) {
int s = max(0, k - m + 1);
int t = min(n, k + 1);
res[k] += (t - s) * mi_a * mi_b;
res[k] += mi_a * (Bc[k - s + 1] - Bc[k - t + 1]);
res[k] += mi_b * (Ac[t] - Ac[s]);
}
static constexpr u32 MOD1 = 1004535809;
static constexpr u32 MOD2 = 1012924417;
using mint1 = modint<MOD1>;
using mint2 = modint<MOD2>;
vc<mint1> a1(n), b1(m);
vc<mint2> a2(n), b2(m);
FOR(i, n) a1[i] = a[i], a2[i] = a[i];
FOR(i, m) b1[i] = b[i], b2[i] = b[i];
auto c1 = convolution_ntt<mint1>(a1, b1);
auto c2 = convolution_ntt<mint2>(a2, b2);
FOR(i, n + m - 1) { res[i] += CRT2<u64, MOD1, MOD2>(c1[i].val, c2[i].val); }
return res;
}
template <typename mint>
vc<mint> convolution(const vc<mint>& a, const vc<mint>& b) {
int n = len(a), m = len(b);
if (!n || !m) return {};
if (mint::can_ntt()) {
if (min(n, m) <= 50) return convolution_karatsuba<mint>(a, b);
return convolution_ntt(a, b);
}
if (min(n, m) <= 200) return convolution_karatsuba<mint>(a, b);
return convolution_garner(a, b);
}
#line 5 "poly/poly_taylor_shift.hpp"
// f(x) -> f(x+c)
template <typename mint>
vc<mint> poly_taylor_shift(vc<mint> f, mint c) {
if (c == mint(0)) return f;
ll N = len(f);
FOR(i, N) f[i] *= fact<mint>(i);
auto b = powertable_1<mint>(c, N);
FOR(i, N) b[i] *= fact_inv<mint>(i);
reverse(all(f));
f = convolution(f, b);
f.resize(N);
reverse(all(f));
FOR(i, N) f[i] *= fact_inv<mint>(i);
return f;
}
#line 2 "poly/sum_of_rationals.hpp"
#line 2 "poly/ntt_doubling.hpp"
#line 4 "poly/ntt_doubling.hpp"
// 2^k 次多項式の長さ 2^k が与えられるので 2^k+1 にする
template <typename mint, bool transposed = false>
void ntt_doubling(vector<mint>& a) {
static array<mint, 30> root;
static bool prepared = 0;
if (!prepared) {
prepared = 1;
const int rank2 = mint::ntt_info().fi;
root[rank2] = mint::ntt_info().se;
FOR_R(i, rank2) { root[i] = root[i + 1] * root[i + 1]; }
}
if constexpr (!transposed) {
const int M = (int)a.size();
auto b = a;
ntt(b, 1);
mint r = 1, zeta = root[topbit(2 * M)];
FOR(i, M) b[i] *= r, r *= zeta;
ntt(b, 0);
copy(begin(b), end(b), back_inserter(a));
} else {
const int M = len(a) / 2;
vc<mint> tmp = {a.begin(), a.begin() + M};
a = {a.begin() + M, a.end()};
transposed_ntt(a, 0);
mint r = 1, zeta = root[topbit(2 * M)];
FOR(i, M) a[i] *= r, r *= zeta;
transposed_ntt(a, 1);
FOR(i, M) a[i] += tmp[i];
}
}
#line 5 "poly/sum_of_rationals.hpp"
// 有理式の和を計算する。分割統治 O(Nlog^2N)。N は次数の和。
template <typename mint>
pair<vc<mint>, vc<mint>> sum_of_rationals(vc<pair<vc<mint>, vc<mint>>> dat) {
if (len(dat) == 0) {
vc<mint> f = {0}, g = {1};
return {f, g};
}
using P = pair<vc<mint>, vc<mint>>;
auto add = [&](P& a, P& b) -> P {
int na = len(a.fi) - 1, da = len(a.se) - 1;
int nb = len(b.fi) - 1, db = len(b.se) - 1;
int n = max(na + db, da + nb);
vc<mint> num(n + 1);
{
auto f = convolution(a.fi, b.se);
FOR(i, len(f)) num[i] += f[i];
}
{
auto f = convolution(a.se, b.fi);
FOR(i, len(f)) num[i] += f[i];
}
auto den = convolution(a.se, b.se);
return {num, den};
};
while (len(dat) > 1) {
int n = len(dat);
FOR(i, 1, n, 2) { dat[i - 1] = add(dat[i - 1], dat[i]); }
FOR(i, ceil(n, 2)) dat[i] = dat[2 * i];
dat.resize(ceil(n, 2));
}
return dat[0];
}
// sum wt[i]/(1-A[i]x)
template <typename mint>
pair<vc<mint>, vc<mint>> sum_of_rationals_1(vc<mint> A, vc<mint> wt) {
using poly = vc<mint>;
if (!mint::can_ntt()) {
vc<pair<poly, poly>> rationals;
FOR(i, len(A)) rationals.eb(poly({wt[i]}), poly({mint(1), -A[i]}));
return sum_of_rationals(rationals);
}
int n = 1;
while (n < len(A)) n *= 2;
int k = topbit(n);
vc<mint> F(n), G(n);
vc<mint> nxt_F(n), nxt_G(n);
FOR(i, len(A)) F[i] = -A[i], G[i] = wt[i];
int D = 6;
FOR(d, k) {
int b = 1 << d;
if (d < D) {
fill(all(nxt_F), mint(0)), fill(all(nxt_G), mint(0));
for (int L = 0; L < n; L += 2 * b) {
FOR(i, b) FOR(j, b) nxt_F[L + i + j] += F[L + i] * F[L + b + j];
FOR(i, b) FOR(j, b) nxt_G[L + i + j] += F[L + i] * G[L + b + j];
FOR(i, b) FOR(j, b) nxt_G[L + i + j] += F[L + b + i] * G[L + j];
FOR(i, b) nxt_F[L + b + i] += F[L + i] + F[L + b + i];
FOR(i, b) nxt_G[L + b + i] += G[L + i] + G[L + b + i];
}
}
elif (d == D) {
for (int L = 0; L < n; L += 2 * b) {
poly f1 = {F.begin() + L, F.begin() + L + b};
poly f2 = {F.begin() + L + b, F.begin() + L + 2 * b};
poly g1 = {G.begin() + L, G.begin() + L + b};
poly g2 = {G.begin() + L + b, G.begin() + L + 2 * b};
f1.resize(2 * b), f2.resize(2 * b), g1.resize(2 * b), g2.resize(2 * b);
ntt(f1, 0), ntt(f2, 0), ntt(g1, 0), ntt(g2, 0);
FOR(i, b) f1[i] += 1, f2[i] += 1;
FOR(i, b, 2 * b) f1[i] -= 1, f2[i] -= 1;
FOR(i, 2 * b) nxt_F[L + i] = f1[i] * f2[i] - 1;
FOR(i, 2 * b) nxt_G[L + i] = g1[i] * f2[i] + g2[i] * f1[i];
}
}
else {
for (int L = 0; L < n; L += 2 * b) {
poly f1 = {F.begin() + L, F.begin() + L + b};
poly f2 = {F.begin() + L + b, F.begin() + L + 2 * b};
poly g1 = {G.begin() + L, G.begin() + L + b};
poly g2 = {G.begin() + L + b, G.begin() + L + 2 * b};
ntt_doubling(f1), ntt_doubling(f2), ntt_doubling(g1), ntt_doubling(g2);
FOR(i, b) f1[i] += 1, f2[i] += 1;
FOR(i, b, 2 * b) f1[i] -= 1, f2[i] -= 1;
FOR(i, 2 * b) nxt_F[L + i] = f1[i] * f2[i] - 1;
FOR(i, 2 * b) nxt_G[L + i] = g1[i] * f2[i] + g2[i] * f1[i];
}
}
swap(F, nxt_F), swap(G, nxt_G);
}
if (k - 1 >= D) ntt(F, 1), ntt(G, 1);
F.eb(1);
reverse(all(F)), reverse(all(G));
F.resize(len(A) + 1);
G.resize(len(A));
return {G, F};
}
#line 2 "poly/count_terms.hpp"
template<typename mint>
int count_terms(const vc<mint>& f){
int t = 0;
FOR(i, len(f)) if(f[i] != mint(0)) ++t;
return t;
}
#line 4 "poly/fps_inv.hpp"
template <typename mint>
vc<mint> fps_inv_sparse(const vc<mint>& f) {
int N = len(f);
vc<pair<int, mint>> dat;
FOR(i, 1, N) if (f[i] != mint(0)) dat.eb(i, f[i]);
vc<mint> g(N);
mint g0 = mint(1) / f[0];
g[0] = g0;
FOR(n, 1, N) {
mint rhs = 0;
for (auto&& [k, fk]: dat) {
if (k > n) break;
rhs -= fk * g[n - k];
}
g[n] = rhs * g0;
}
return g;
}
template <typename mint>
vc<mint> fps_inv_dense_ntt(const vc<mint>& F) {
vc<mint> G = {mint(1) / F[0]};
ll N = len(F), n = 1;
G.reserve(N);
while (n < N) {
vc<mint> f(2 * n), g(2 * n);
FOR(i, min(N, 2 * n)) f[i] = F[i];
FOR(i, n) g[i] = G[i];
ntt(f, false), ntt(g, false);
FOR(i, 2 * n) f[i] *= g[i];
ntt(f, true);
FOR(i, n) f[i] = 0;
ntt(f, false);
FOR(i, 2 * n) f[i] *= g[i];
ntt(f, true);
FOR(i, n, min(N, 2 * n)) G.eb(-f[i]);
n *= 2;
}
return G;
}
template <typename mint>
vc<mint> fps_inv_dense(const vc<mint>& F) {
if (mint::can_ntt()) return fps_inv_dense_ntt(F);
const int N = len(F);
vc<mint> R = {mint(1) / F[0]};
vc<mint> p;
int m = 1;
while (m < N) {
p = convolution(R, R);
p.resize(m + m);
vc<mint> f = {F.begin(), F.begin() + min(m + m, N)};
p = convolution(p, f);
R.resize(m + m);
FOR(i, m + m) R[i] = R[i] + R[i] - p[i];
m += m;
}
R.resize(N);
return R;
}
template <typename mint>
vc<mint> fps_inv(const vc<mint>& f) {
assert(f[0] != mint(0));
int n = count_terms(f);
int t = (mint::can_ntt() ? 160 : 820);
return (n <= t ? fps_inv_sparse<mint>(f) : fps_inv_dense<mint>(f));
}
#line 3 "poly/sum_of_exp_bx.hpp"
// sum a e^{bx} を [0,NN 次まで。O(Mlog^2M + NlogN)
template <typename mint>
vc<mint> sum_of_exp_bx(int N, vc<mint> A, vc<mint> B) {
auto [f, g] = sum_of_rationals_1<mint>(B, A);
g.resize(N + 1);
f = convolution(f, fps_inv(g));
f.resize(N + 1);
FOR(n, N + 1) f[n] *= fact_inv<mint>(n);
return f;
}
#line 2 "poly/composition_f_ex.hpp"
// N 次多項式 f に対して、f(e^x) を [0,N] 次まで。O(Nlog^2N)
// f が N より長くて欲しいものが [0,N] という場合も f を resize(N+1)
// すると答が変わるので注意
template <typename mint>
vc<mint> composition_f_ex(vc<mint> f) {
int N = len(f) - 1;
vc<mint> A, B;
FOR(k, len(f)) A.eb(f[k]), B.eb(mint(k));
return sum_of_exp_bx(N, A, B);
}
#line 4 "poly/composition_f_ex_minus_1.hpp"
// f(1-e^x)
template <typename mint>
vc<mint> composition_f_ex_minus_1(vc<mint> f) {
f = poly_taylor_shift<mint>(f, -1);
return composition_f_ex<mint>(f);
}