This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub maspypy/library
#include "nt/nimber/nimber_log.hpp"
#include "nt/nimber/base.hpp" #include "ds/hashmap.hpp" #include "mod/crt3.hpp" // primitive root const Nimber64 root_64 = u64(1) << 32 | 6; const Nimber32 root_32 = 2147483651; const Nimber16 root_16 = 41899; u64 nimber_log(Nimber16 x) { assert(x != 0); u32 ans = u32(37991) * NIM_PRODUCT::L[x.val]; return ans % 65535; } u64 nimber_log(Nimber32 x) { using F = Nimber32; assert(x != 0); static HashMap<u32> MP(330); static F g = 0; if (len(MP) == 0) { // build g = root_32.pow(65535); // 65537 乗根 F gg = g.pow(200); F pow = 1; FOR(i, 330) MP[pow.val] = i, pow *= gg; } u64 a = [&]() -> u32 { F x1 = x.pow(65535); FOR(i, 200) { u32 k = MP.get(x1.val, -1); if (k != u32(-1)) { return (65537 + 200 * k - i) % 65537; } x1 *= g; } assert(0); return 0; }(); u64 b = nimber_log(Nimber16(x.pow(65537).val)); return CRT2<u64, 65535, 65537>(b, a); } u64 nimber_log(Nimber64 x) { using F = Nimber64; assert(x != 0); const u64 mod1 = u32(-1); const u64 mod2 = mod1 + 2; const u32 p1 = 641; const u32 p2 = 6700417; static HashMap<u32> MP1(3400); static HashMap<u32> MP2(641); static F g1, g2; if (len(MP1) == 0) { g1 = root_64.pow(mod1 * p1); // p2 乗根 g2 = root_64.pow(mod1 * p2); // p1 乗根 F gg = g1.pow(2000); F pow = 1; FOR(i, 3400) MP1[pow.val] = i, pow *= gg; pow = 1; FOR(i, 641) MP2[pow.val] = i, pow *= g2; } u64 a1 = [&]() -> u64 { F x1 = x.pow(mod1 * p1); FOR(i, 2000) { u32 k = MP1.get(x1.val, -1); if (k != u32(-1)) { return (p2 + 2000 * k - i) % p2; } x1 *= g1; } assert(0); return 0; }(); u64 a2 = MP2[x.pow(mod1 * p2).val]; u64 b = nimber_log(Nimber32(x.pow(mod2).val)); u64 a = CRT2<u64, p1, p2>(a2, a1); u128 ans = u128(a) * (u64(-1) - mod1) + u128(b) * mod2; if (ans & 1) ans += u64(-1); return (ans / 2) % u64(-1); } // 最小解. ちょうど -1 を false の意味に使える. template <typename F> u64 nimber_log(F x, F y) { u64 X = nimber_log(x), Y = nimber_log(y); // X*n = Y mod (2^64-1) u64 mod = -1; u64 a = X, b = mod; i128 u = 1, v = 0, t; while (b > 0) { t = a / b; swap(a -= t * b, b), swap(u -= t * v, v); } if (Y % a != 0) return -1; if (u < 0) u += mod; return (Y / a) * u % (mod / a); }
#line 2 "nt/nimber/nimber_impl.hpp" namespace NIM_PRODUCT { u16 E[65535 * 2 + 7]; u16 L[65536]; u64 S[4][65536]; u64 SR[4][65536]; u16 p16_15(u16 a, u16 b) { return (a && b ? E[u32(L[a]) + L[b] + 3] : 0); } u16 p16_15_15(u16 a, u16 b) { return (a && b ? E[u32(L[a]) + L[b] + 6] : 0); } u16 mul_15(u16 a) { return (a ? E[3 + L[a]] : 0); } u16 mul_15_15(u16 a) { return (a ? E[6 + L[a]] : 0); } u32 p32_mul_31(u32 a, u32 b) { u16 al = a & 65535, ah = a >> 16, bl = b & 65535, bh = b >> 16; u16 x = p16_15(al, bl); u16 y = p16_15_15(ah, bh); u16 z = p16_15(al ^ ah, bl ^ bh); return u32(y ^ z) << 16 | mul_15(z ^ x); } u32 mul_31(u32 a) { u16 al = a & 65535, ah = a >> 16; return u32(mul_15(al ^ ah)) << 16 | mul_15_15(ah); } u16 prod(u16 a, u16 b) { return (a && b ? E[u32(L[a]) + L[b]] : 0); } u32 prod(u32 a, u32 b) { u16 al = a & 65535, ah = a >> 16, bl = b & 65535, bh = b >> 16; u16 c = prod(al, bl); return u32(prod(u16(al ^ ah), u16(bl ^ bh)) ^ c) << 16 | (p16_15(ah, bh) ^ c); } u64 prod(u64 a, u64 b) { u32 al = a & 0xffffffff, ah = a >> 32, bl = b & 0xffffffff, bh = b >> 32; u32 c = prod(al, bl); return u64(prod(al ^ ah, bl ^ bh) ^ c) << 32 ^ (p32_mul_31(ah, bh) ^ c); } u16 square(u16 a) { return S[0][a]; } u32 square(u32 a) { return S[0][a & 65535] ^ S[1][a >> 16]; } u64 square(u64 a) { return S[0][a & 65535] ^ S[1][a >> 16 & 65535] ^ S[2][a >> 32 & 65535] ^ S[3][a >> 48 & 65535]; } u16 sqrt(u16 a) { return SR[0][a]; } u32 sqrt(u32 a) { return SR[0][a & 65535] ^ SR[1][a >> 16]; } u64 sqrt(u64 a) { return SR[0][a & 65535] ^ SR[1][a >> 16 & 65535] ^ SR[2][a >> 32 & 65535] ^ SR[3][a >> 48 & 65535]; } // inv: 2^16 の共役が 2^16+1 であることなどを使う. x^{-1}=y(xy)^{-1} という要領. u16 inverse(u16 a) { return E[65535 - L[a]]; } u32 inverse(u32 a) { if (a < 65536) return inverse(u16(a)); u16 al = a & 65535, ah = a >> 16; u16 norm = prod(al, al ^ ah) ^ E[L[ah] * 2 + 3]; int k = 65535 - L[norm]; al = (al ^ ah ? E[L[al ^ ah] + k] : 0), ah = E[L[ah] + k]; return al | u32(ah) << 16; } u64 inverse(u64 a) { if (a <= u32(-1)) return inverse(u32(a)); u32 al = a & 0xffffffff, ah = a >> 32; u32 norm = prod(al, al ^ ah) ^ mul_31(square(ah)); u32 i = inverse(norm); return prod(al ^ ah, i) | u64(prod(ah, i)) << 32; } void __attribute__((constructor)) init_nim_table() { // 2^16 未満のところについて原始根 10279 での指数対数表を作る // 2^k との積 u16 tmp[] = {10279, 15417, 35722, 52687, 44124, 62628, 15661, 5686, 3862, 1323, 334, 647, 61560, 20636, 4267, 8445}; u16 nxt[65536]; FOR(i, 16) { FOR(s, 1 << i) { nxt[s | 1 << i] = nxt[s] ^ tmp[i]; } } E[0] = 1; FOR(i, 65534) E[i + 1] = nxt[E[i]]; memcpy(E + 65535, E, 131070); memcpy(E + 131070, E, 14); FOR(i, 65535) L[E[i]] = i; FOR(t, 4) { FOR(i, 16) { int k = 16 * t + i; u64 X = prod(u64(1) << k, u64(1) << k); FOR(s, 1 << i) S[t][s | 1 << i] = S[t][s] ^ X; } } FOR(t, 4) { FOR(i, 16) { int k = 16 * t + i; u64 X = u64(1) << k; FOR(63) X = square(X); FOR(s, 1 << i) SR[t][s | 1 << i] = SR[t][s] ^ X; } } } } // namespace NIM_PRODUCT #line 3 "nt/nimber/base.hpp" template <typename UINT> struct Nimber { using F = Nimber; UINT val; constexpr Nimber(UINT x = 0) : val(x) {} F &operator+=(const F &p) { val ^= p.val; return *this; } F &operator-=(const F &p) { val ^= p.val; return *this; } F &operator*=(const F &p) { val = NIM_PRODUCT::prod(val, p.val); return *this; } F &operator/=(const F &p) { *this *= p.inverse(); return *this; } F operator-() const { return *this; } F operator+(const F &p) const { return F(*this) += p; } F operator-(const F &p) const { return F(*this) -= p; } F operator*(const F &p) const { return F(*this) *= p; } F operator/(const F &p) const { return F(*this) /= p; } bool operator==(const F &p) const { return val == p.val; } bool operator!=(const F &p) const { return val != p.val; } F inverse() const { return NIM_PRODUCT::inverse(val); } F pow(u64 n) const { assert(n >= 0); UINT ret = 1, mul = val; while (n > 0) { if (n & 1) ret = NIM_PRODUCT::prod(ret, mul); mul = NIM_PRODUCT::square(mul); n >>= 1; } return F(ret); } F square() { return F(NIM_PRODUCT::square(val)); } F sqrt() { return F(NIM_PRODUCT::sqrt(val)); } }; #ifdef FASTIO template <typename T> void rd(Nimber<T> &x) { fastio::rd(x.val); } template <typename T> void wt(Nimber<T> &x) { fastio::wt(x.val); } #endif using Nimber16 = Nimber<u16>; using Nimber32 = Nimber<u32>; using Nimber64 = Nimber<u64>; #line 2 "ds/hashmap.hpp" // u64 -> Val template <typename Val> struct HashMap { // n は入れたいものの個数で ok HashMap(u32 n = 0) { build(n); } void build(u32 n) { u32 k = 8; while (k < n * 2) k *= 2; cap = k / 2, mask = k - 1; key.resize(k), val.resize(k), used.assign(k, 0); } // size を保ったまま. size=0 にするときは build すること. void clear() { used.assign(len(used), 0); cap = (mask + 1) / 2; } int size() { return len(used) / 2 - cap; } int index(const u64& k) { int i = 0; for (i = hash(k); used[i] && key[i] != k; i = (i + 1) & mask) {} return i; } Val& operator[](const u64& k) { if (cap == 0) extend(); int i = index(k); if (!used[i]) { used[i] = 1, key[i] = k, val[i] = Val{}, --cap; } return val[i]; } Val get(const u64& k, Val default_value) { int i = index(k); return (used[i] ? val[i] : default_value); } bool count(const u64& k) { int i = index(k); return used[i] && key[i] == k; } // f(key, val) template <typename F> void enumerate_all(F f) { FOR(i, len(used)) if (used[i]) f(key[i], val[i]); } private: u32 cap, mask; vc<u64> key; vc<Val> val; vc<bool> used; u64 hash(u64 x) { static const u64 FIXED_RANDOM = std::chrono::steady_clock::now().time_since_epoch().count(); x += FIXED_RANDOM; x = (x ^ (x >> 30)) * 0xbf58476d1ce4e5b9; x = (x ^ (x >> 27)) * 0x94d049bb133111eb; return (x ^ (x >> 31)) & mask; } void extend() { vc<pair<u64, Val>> dat; dat.reserve(len(used) / 2 - cap); FOR(i, len(used)) { if (used[i]) dat.eb(key[i], val[i]); } build(2 * len(dat)); for (auto& [a, b]: dat) (*this)[a] = b; } }; #line 2 "mod/crt3.hpp" constexpr u32 mod_pow_constexpr(u64 a, u64 n, u32 mod) { a %= mod; u64 res = 1; FOR(32) { if (n & 1) res = res * a % mod; a = a * a % mod, n /= 2; } return res; } template <typename T, u32 p0, u32 p1> T CRT2(u64 a0, u64 a1) { static_assert(p0 < p1); static constexpr u64 x0_1 = mod_pow_constexpr(p0, p1 - 2, p1); u64 c = (a1 - a0 + p1) * x0_1 % p1; return a0 + c * p0; } template <typename T, u32 p0, u32 p1, u32 p2> T CRT3(u64 a0, u64 a1, u64 a2) { static_assert(p0 < p1 && p1 < p2); static constexpr u64 x1 = mod_pow_constexpr(p0, p1 - 2, p1); static constexpr u64 x2 = mod_pow_constexpr(u64(p0) * p1 % p2, p2 - 2, p2); static constexpr u64 p01 = u64(p0) * p1; u64 c = (a1 - a0 + p1) * x1 % p1; u64 ans_1 = a0 + c * p0; c = (a2 - ans_1 % p2 + p2) * x2 % p2; return T(ans_1) + T(c) * T(p01); } template <typename T, u32 p0, u32 p1, u32 p2, u32 p3> T CRT4(u64 a0, u64 a1, u64 a2, u64 a3) { static_assert(p0 < p1 && p1 < p2 && p2 < p3); static constexpr u64 x1 = mod_pow_constexpr(p0, p1 - 2, p1); static constexpr u64 x2 = mod_pow_constexpr(u64(p0) * p1 % p2, p2 - 2, p2); static constexpr u64 x3 = mod_pow_constexpr(u64(p0) * p1 % p3 * p2 % p3, p3 - 2, p3); static constexpr u64 p01 = u64(p0) * p1; u64 c = (a1 - a0 + p1) * x1 % p1; u64 ans_1 = a0 + c * p0; c = (a2 - ans_1 % p2 + p2) * x2 % p2; u128 ans_2 = ans_1 + c * static_cast<u128>(p01); c = (a3 - ans_2 % p3 + p3) * x3 % p3; return T(ans_2) + T(c) * T(p01) * T(p2); } template <typename T, u32 p0, u32 p1, u32 p2, u32 p3, u32 p4> T CRT5(u64 a0, u64 a1, u64 a2, u64 a3, u64 a4) { static_assert(p0 < p1 && p1 < p2 && p2 < p3 && p3 < p4); static constexpr u64 x1 = mod_pow_constexpr(p0, p1 - 2, p1); static constexpr u64 x2 = mod_pow_constexpr(u64(p0) * p1 % p2, p2 - 2, p2); static constexpr u64 x3 = mod_pow_constexpr(u64(p0) * p1 % p3 * p2 % p3, p3 - 2, p3); static constexpr u64 x4 = mod_pow_constexpr(u64(p0) * p1 % p4 * p2 % p4 * p3 % p4, p4 - 2, p4); static constexpr u64 p01 = u64(p0) * p1; static constexpr u64 p23 = u64(p2) * p3; u64 c = (a1 - a0 + p1) * x1 % p1; u64 ans_1 = a0 + c * p0; c = (a2 - ans_1 % p2 + p2) * x2 % p2; u128 ans_2 = ans_1 + c * static_cast<u128>(p01); c = static_cast<u64>(a3 - ans_2 % p3 + p3) * x3 % p3; u128 ans_3 = ans_2 + static_cast<u128>(c * p2) * p01; c = static_cast<u64>(a4 - ans_3 % p4 + p4) * x4 % p4; return T(ans_3) + T(c) * T(p01) * T(p23); } #line 4 "nt/nimber/nimber_log.hpp" // primitive root const Nimber64 root_64 = u64(1) << 32 | 6; const Nimber32 root_32 = 2147483651; const Nimber16 root_16 = 41899; u64 nimber_log(Nimber16 x) { assert(x != 0); u32 ans = u32(37991) * NIM_PRODUCT::L[x.val]; return ans % 65535; } u64 nimber_log(Nimber32 x) { using F = Nimber32; assert(x != 0); static HashMap<u32> MP(330); static F g = 0; if (len(MP) == 0) { // build g = root_32.pow(65535); // 65537 乗根 F gg = g.pow(200); F pow = 1; FOR(i, 330) MP[pow.val] = i, pow *= gg; } u64 a = [&]() -> u32 { F x1 = x.pow(65535); FOR(i, 200) { u32 k = MP.get(x1.val, -1); if (k != u32(-1)) { return (65537 + 200 * k - i) % 65537; } x1 *= g; } assert(0); return 0; }(); u64 b = nimber_log(Nimber16(x.pow(65537).val)); return CRT2<u64, 65535, 65537>(b, a); } u64 nimber_log(Nimber64 x) { using F = Nimber64; assert(x != 0); const u64 mod1 = u32(-1); const u64 mod2 = mod1 + 2; const u32 p1 = 641; const u32 p2 = 6700417; static HashMap<u32> MP1(3400); static HashMap<u32> MP2(641); static F g1, g2; if (len(MP1) == 0) { g1 = root_64.pow(mod1 * p1); // p2 乗根 g2 = root_64.pow(mod1 * p2); // p1 乗根 F gg = g1.pow(2000); F pow = 1; FOR(i, 3400) MP1[pow.val] = i, pow *= gg; pow = 1; FOR(i, 641) MP2[pow.val] = i, pow *= g2; } u64 a1 = [&]() -> u64 { F x1 = x.pow(mod1 * p1); FOR(i, 2000) { u32 k = MP1.get(x1.val, -1); if (k != u32(-1)) { return (p2 + 2000 * k - i) % p2; } x1 *= g1; } assert(0); return 0; }(); u64 a2 = MP2[x.pow(mod1 * p2).val]; u64 b = nimber_log(Nimber32(x.pow(mod2).val)); u64 a = CRT2<u64, p1, p2>(a2, a1); u128 ans = u128(a) * (u64(-1) - mod1) + u128(b) * mod2; if (ans & 1) ans += u64(-1); return (ans / 2) % u64(-1); } // 最小解. ちょうど -1 を false の意味に使える. template <typename F> u64 nimber_log(F x, F y) { u64 X = nimber_log(x), Y = nimber_log(y); // X*n = Y mod (2^64-1) u64 mod = -1; u64 a = X, b = mod; i128 u = 1, v = 0, t; while (b > 0) { t = a / b; swap(a -= t * b, b), swap(u -= t * v, v); } if (Y % a != 0) return -1; if (u < 0) u += mod; return (Y / a) * u % (mod / a); }