This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub maspypy/library
#include "mod/mod_log.hpp"
#include "mod/dynamic_modint.hpp" #include "nt/discrete_log.hpp" #include "alg/monoid/mul.hpp" int mod_log(int mod, ll a, ll b) { dmint::set_mod(mod); return discrete_log_monoid<Monoid_Mul<dmint>>( dmint(a), dmint(b), [](auto x) { return x.val; }, 0, mod); }
#line 2 "mod/dynamic_modint.hpp" #line 2 "mod/modint_common.hpp" struct has_mod_impl { template <class T> static auto check(T &&x) -> decltype(x.get_mod(), std::true_type{}); template <class T> static auto check(...) -> std::false_type; }; template <class T> class has_mod : public decltype(has_mod_impl::check<T>(std::declval<T>())) {}; template <typename mint> mint inv(int n) { static const int mod = mint::get_mod(); static vector<mint> dat = {0, 1}; assert(0 <= n); if (n >= mod) n %= mod; while (len(dat) <= n) { int k = len(dat); int q = (mod + k - 1) / k; dat.eb(dat[k * q - mod] * mint::raw(q)); } return dat[n]; } template <typename mint> mint fact(int n) { static const int mod = mint::get_mod(); assert(0 <= n && n < mod); static vector<mint> dat = {1, 1}; while (len(dat) <= n) dat.eb(dat[len(dat) - 1] * mint::raw(len(dat))); return dat[n]; } template <typename mint> mint fact_inv(int n) { static vector<mint> dat = {1, 1}; if (n < 0) return mint(0); while (len(dat) <= n) dat.eb(dat[len(dat) - 1] * inv<mint>(len(dat))); return dat[n]; } template <class mint, class... Ts> mint fact_invs(Ts... xs) { return (mint(1) * ... * fact_inv<mint>(xs)); } template <typename mint, class Head, class... Tail> mint multinomial(Head &&head, Tail &&... tail) { return fact<mint>(head) * fact_invs<mint>(std::forward<Tail>(tail)...); } template <typename mint> mint C_dense(int n, int k) { assert(n >= 0); if (k < 0 || n < k) return 0; static vvc<mint> C; static int H = 0, W = 0; auto calc = [&](int i, int j) -> mint { if (i == 0) return (j == 0 ? mint(1) : mint(0)); return C[i - 1][j] + (j ? C[i - 1][j - 1] : 0); }; if (W <= k) { FOR(i, H) { C[i].resize(k + 1); FOR(j, W, k + 1) { C[i][j] = calc(i, j); } } W = k + 1; } if (H <= n) { C.resize(n + 1); FOR(i, H, n + 1) { C[i].resize(W); FOR(j, W) { C[i][j] = calc(i, j); } } H = n + 1; } return C[n][k]; } template <typename mint, bool large = false, bool dense = false> mint C(ll n, ll k) { assert(n >= 0); if (k < 0 || n < k) return 0; if constexpr (dense) return C_dense<mint>(n, k); if constexpr (!large) return multinomial<mint>(n, k, n - k); k = min(k, n - k); mint x(1); FOR(i, k) x *= mint(n - i); return x * fact_inv<mint>(k); } template <typename mint, bool large = false> mint C_inv(ll n, ll k) { assert(n >= 0); assert(0 <= k && k <= n); if (!large) return fact_inv<mint>(n) * fact<mint>(k) * fact<mint>(n - k); return mint(1) / C<mint, 1>(n, k); } // [x^d](1-x)^{-n} template <typename mint, bool large = false, bool dense = false> mint C_negative(ll n, ll d) { assert(n >= 0); if (d < 0) return mint(0); if (n == 0) { return (d == 0 ? mint(1) : mint(0)); } return C<mint, large, dense>(n + d - 1, d); } #line 2 "mod/primitive_root.hpp" #line 2 "nt/factor.hpp" #line 2 "random/base.hpp" u64 RNG_64() { static u64 x_ = u64(chrono::duration_cast<chrono::nanoseconds>(chrono::high_resolution_clock::now().time_since_epoch()).count()) * 10150724397891781847ULL; x_ ^= x_ << 7; return x_ ^= x_ >> 9; } u64 RNG(u64 lim) { return RNG_64() % lim; } ll RNG(ll l, ll r) { return l + RNG_64() % (r - l); } #line 2 "mod/mongomery_modint.hpp" // odd mod. // x の代わりに rx を持つ template <int id, typename U1, typename U2> struct Mongomery_modint { using mint = Mongomery_modint; inline static U1 m, r, n2; static constexpr int W = numeric_limits<U1>::digits; static void set_mod(U1 mod) { assert(mod & 1 && mod <= U1(1) << (W - 2)); m = mod, n2 = -U2(m) % m, r = m; FOR(5) r *= 2 - m * r; r = -r; assert(r * m == U1(-1)); } static U1 reduce(U2 b) { return (b + U2(U1(b) * r) * m) >> W; } U1 x; Mongomery_modint() : x(0) {} Mongomery_modint(U1 x) : x(reduce(U2(x) * n2)){}; U1 val() const { U1 y = reduce(x); return y >= m ? y - m : y; } mint &operator+=(mint y) { x = ((x += y.x) >= m ? x - m : x); return *this; } mint &operator-=(mint y) { x -= (x >= y.x ? y.x : y.x - m); return *this; } mint &operator*=(mint y) { x = reduce(U2(x) * y.x); return *this; } mint operator+(mint y) const { return mint(*this) += y; } mint operator-(mint y) const { return mint(*this) -= y; } mint operator*(mint y) const { return mint(*this) *= y; } bool operator==(mint y) const { return (x >= m ? x - m : x) == (y.x >= m ? y.x - m : y.x); } bool operator!=(mint y) const { return not operator==(y); } mint pow(ll n) const { assert(n >= 0); mint y = 1, z = *this; for (; n; n >>= 1, z *= z) if (n & 1) y *= z; return y; } }; template <int id> using Mongomery_modint_32 = Mongomery_modint<id, u32, u64>; template <int id> using Mongomery_modint_64 = Mongomery_modint<id, u64, u128>; #line 3 "nt/primetest.hpp" bool primetest(const u64 x) { assert(x < u64(1) << 62); if (x == 2 or x == 3 or x == 5 or x == 7) return true; if (x % 2 == 0 or x % 3 == 0 or x % 5 == 0 or x % 7 == 0) return false; if (x < 121) return x > 1; const u64 d = (x - 1) >> lowbit(x - 1); using mint = Mongomery_modint_64<202311020>; mint::set_mod(x); const mint one(u64(1)), minus_one(x - 1); auto ok = [&](u64 a) -> bool { auto y = mint(a).pow(d); u64 t = d; while (y != one && y != minus_one && t != x - 1) y *= y, t <<= 1; if (y != minus_one && t % 2 == 0) return false; return true; }; if (x < (u64(1) << 32)) { for (u64 a: {2, 7, 61}) if (!ok(a)) return false; } else { for (u64 a: {2, 325, 9375, 28178, 450775, 9780504, 1795265022}) { if (!ok(a)) return false; } } return true; } #line 5 "nt/factor.hpp" template <typename mint> ll rho(ll n, ll c) { assert(n > 1); const mint cc(c); auto f = [&](mint x) { return x * x + cc; }; mint x = 1, y = 2, z = 1, q = 1; ll g = 1; const ll m = 1LL << (__lg(n) / 5); for (ll r = 1; g == 1; r <<= 1) { x = y; FOR(r) y = f(y); for (ll k = 0; k < r && g == 1; k += m) { z = y; FOR(min(m, r - k)) y = f(y), q *= x - y; g = gcd(q.val(), n); } } if (g == n) do { z = f(z); g = gcd((x - z).val(), n); } while (g == 1); return g; } ll find_prime_factor(ll n) { assert(n > 1); if (primetest(n)) return n; FOR(100) { ll m = 0; if (n < (1 << 30)) { using mint = Mongomery_modint_32<20231025>; mint::set_mod(n); m = rho<mint>(n, RNG(0, n)); } else { using mint = Mongomery_modint_64<20231025>; mint::set_mod(n); m = rho<mint>(n, RNG(0, n)); } if (primetest(m)) return m; n = m; } assert(0); return -1; } // ソートしてくれる vc<pair<ll, int>> factor(ll n) { assert(n >= 1); vc<pair<ll, int>> pf; FOR(p, 2, 100) { if (p * p > n) break; if (n % p == 0) { ll e = 0; do { n /= p, e += 1; } while (n % p == 0); pf.eb(p, e); } } while (n > 1) { ll p = find_prime_factor(n); ll e = 0; do { n /= p, e += 1; } while (n % p == 0); pf.eb(p, e); } sort(all(pf)); return pf; } vc<pair<ll, int>> factor_by_lpf(ll n, vc<int>& lpf) { vc<pair<ll, int>> res; while (n > 1) { int p = lpf[n]; int e = 0; while (n % p == 0) { n /= p; ++e; } res.eb(p, e); } return res; } #line 2 "mod/mod_pow.hpp" #line 2 "mod/barrett.hpp" // https://github.com/atcoder/ac-library/blob/master/atcoder/internal_math.hpp struct Barrett { u32 m; u64 im; explicit Barrett(u32 m = 1) : m(m), im(u64(-1) / m + 1) {} u32 umod() const { return m; } u32 modulo(u64 z) { if (m == 1) return 0; u64 x = (u64)(((unsigned __int128)(z)*im) >> 64); u64 y = x * m; return (z - y + (z < y ? m : 0)); } u64 floor(u64 z) { if (m == 1) return z; u64 x = (u64)(((unsigned __int128)(z)*im) >> 64); u64 y = x * m; return (z < y ? x - 1 : x); } pair<u64, u32> divmod(u64 z) { if (m == 1) return {z, 0}; u64 x = (u64)(((unsigned __int128)(z)*im) >> 64); u64 y = x * m; if (z < y) return {x - 1, z - y + m}; return {x, z - y}; } u32 mul(u32 a, u32 b) { return modulo(u64(a) * b); } }; struct Barrett_64 { u128 mod, mh, ml; explicit Barrett_64(u64 mod = 1) : mod(mod) { u128 m = u128(-1) / mod; if (m * mod + mod == u128(0)) ++m; mh = m >> 64; ml = m & u64(-1); } u64 umod() const { return mod; } u64 modulo(u128 x) { u128 z = (x & u64(-1)) * ml; z = (x & u64(-1)) * mh + (x >> 64) * ml + (z >> 64); z = (x >> 64) * mh + (z >> 64); x -= z * mod; return x < mod ? x : x - mod; } u64 mul(u64 a, u64 b) { return modulo(u128(a) * b); } }; #line 5 "mod/mod_pow.hpp" u32 mod_pow(int a, ll n, int mod) { assert(n >= 0); a = ((a %= mod) < 0 ? a + mod : a); if ((mod & 1) && (mod < (1 << 30))) { using mint = Mongomery_modint_32<202311021>; mint::set_mod(mod); return mint(a).pow(n).val(); } Barrett bt(mod); int r = 1; while (n) { if (n & 1) r = bt.mul(r, a); a = bt.mul(a, a), n >>= 1; } return r; } u64 mod_pow_64(ll a, ll n, u64 mod) { assert(n >= 0); a = ((a %= mod) < 0 ? a + mod : a); if ((mod & 1) && (mod < (u64(1) << 62))) { using mint = Mongomery_modint_64<202311021>; mint::set_mod(mod); return mint(a).pow(n).val(); } Barrett_64 bt(mod); ll r = 1; while (n) { if (n & 1) r = bt.mul(r, a); a = bt.mul(a, a), n >>= 1; } return r; } #line 6 "mod/primitive_root.hpp" // int int primitive_root(int p) { auto pf = factor(p - 1); auto is_ok = [&](int g) -> bool { for (auto&& [q, e]: pf) if (mod_pow(g, (p - 1) / q, p) == 1) return false; return true; }; while (1) { int x = RNG(1, p); if (is_ok(x)) return x; } return -1; } ll primitive_root_64(ll p) { auto pf = factor(p - 1); auto is_ok = [&](ll g) -> bool { for (auto&& [q, e]: pf) if (mod_pow_64(g, (p - 1) / q, p) == 1) return false; return true; }; while (1) { ll x = RNG(1, p); if (is_ok(x)) return x; } return -1; } #line 6 "mod/dynamic_modint.hpp" template <int id> struct Dynamic_Modint { static constexpr bool is_modint = true; using mint = Dynamic_Modint; u32 val; static Barrett bt; static u32 umod() { return bt.umod(); } static int get_mod() { return (int)(bt.umod()); } static void set_mod(int m) { assert(1 <= m); bt = Barrett(m); } static Dynamic_Modint raw(u32 v) { Dynamic_Modint x; x.val = v; return x; } Dynamic_Modint() : val(0) {} Dynamic_Modint(u32 x) : val(bt.modulo(x)) {} Dynamic_Modint(u64 x) : val(bt.modulo(x)) {} Dynamic_Modint(int x) : val((x %= get_mod()) < 0 ? x + get_mod() : x) {} Dynamic_Modint(ll x) : val((x %= get_mod()) < 0 ? x + get_mod() : x) {} Dynamic_Modint(i128 x) : val((x %= get_mod()) < 0 ? x + get_mod() : x){}; mint& operator+=(const mint& rhs) { val = (val += rhs.val) < umod() ? val : val - umod(); return *this; } mint& operator-=(const mint& rhs) { val = (val += umod() - rhs.val) < umod() ? val : val - umod(); return *this; } mint& operator*=(const mint& rhs) { val = bt.mul(val, rhs.val); return *this; } mint& operator/=(const mint& rhs) { return *this = *this * rhs.inverse(); } mint operator-() const { return mint() - *this; } mint pow(ll n) const { assert(0 <= n); mint x = *this, r = 1; while (n) { if (n & 1) r *= x; x *= x, n >>= 1; } return r; } mint inverse() const { int x = val, mod = get_mod(); int a = x, b = mod, u = 1, v = 0, t; while (b > 0) { t = a / b; swap(a -= t * b, b), swap(u -= t * v, v); } if (u < 0) u += mod; return u; } friend mint operator+(const mint& lhs, const mint& rhs) { return mint(lhs) += rhs; } friend mint operator-(const mint& lhs, const mint& rhs) { return mint(lhs) -= rhs; } friend mint operator*(const mint& lhs, const mint& rhs) { return mint(lhs) *= rhs; } friend mint operator/(const mint& lhs, const mint& rhs) { return mint(lhs) /= rhs; } friend bool operator==(const mint& lhs, const mint& rhs) { return lhs.val == rhs.val; } friend bool operator!=(const mint& lhs, const mint& rhs) { return lhs.val != rhs.val; } static pair<int, int>& get_ntt() { static pair<int, int> p = {-1, -1}; return p; } static void set_ntt_info() { int mod = get_mod(); int k = lowbit(mod - 1); int r = primitive_root(mod); r = mod_pow(r, (mod - 1) >> k, mod); get_ntt() = {k, r}; } static pair<int, int> ntt_info() { return get_ntt(); } static bool can_ntt() { return ntt_info().fi != -1; } }; #ifdef FASTIO template <int id> void rd(Dynamic_Modint<id>& x) { fastio::rd(x.val); x.val %= Dynamic_Modint<id>::umod(); } template <int id> void wt(Dynamic_Modint<id> x) { fastio::wt(x.val); } #endif using dmint = Dynamic_Modint<-1>; template <int id> Barrett Dynamic_Modint<id>::bt; #line 2 "alg/monoid/mul.hpp" template <class T> struct Monoid_Mul { using value_type = T; using X = T; static constexpr X op(const X &x, const X &y) noexcept { return x * y; } static constexpr X inverse(const X &x) noexcept { return X(1) / x; } static constexpr X unit() { return X(1); } static constexpr bool commute = true; }; #line 1 "alg/acted_set/from_monoid.hpp" template <typename Monoid> struct ActedSet_From_Monoid { using Monoid_A = Monoid; using A = typename Monoid::value_type; using S = A; static S act(const S &x, const A &g) { return Monoid::op(x, g); } }; #line 2 "ds/hashmap.hpp" // u64 -> Val template <typename Val> struct HashMap { // n は入れたいものの個数で ok HashMap(u32 n = 0) { build(n); } void build(u32 n) { u32 k = 8; while (k < n * 2) k *= 2; cap = k / 2, mask = k - 1; key.resize(k), val.resize(k), used.assign(k, 0); } // size を保ったまま. size=0 にするときは build すること. void clear() { used.assign(len(used), 0); cap = (mask + 1) / 2; } int size() { return len(used) / 2 - cap; } int index(const u64& k) { int i = 0; for (i = hash(k); used[i] && key[i] != k; i = (i + 1) & mask) {} return i; } Val& operator[](const u64& k) { if (cap == 0) extend(); int i = index(k); if (!used[i]) { used[i] = 1, key[i] = k, val[i] = Val{}, --cap; } return val[i]; } Val get(const u64& k, Val default_value) { int i = index(k); return (used[i] ? val[i] : default_value); } bool count(const u64& k) { int i = index(k); return used[i] && key[i] == k; } // f(key, val) template <typename F> void enumerate_all(F f) { FOR(i, len(used)) if (used[i]) f(key[i], val[i]); } private: u32 cap, mask; vc<u64> key; vc<Val> val; vc<bool> used; u64 hash(u64 x) { static const u64 FIXED_RANDOM = std::chrono::steady_clock::now().time_since_epoch().count(); x += FIXED_RANDOM; x = (x ^ (x >> 30)) * 0xbf58476d1ce4e5b9; x = (x ^ (x >> 27)) * 0x94d049bb133111eb; return (x ^ (x >> 31)) & mask; } void extend() { vc<pair<u64, Val>> dat; dat.reserve(len(used) / 2 - cap); FOR(i, len(used)) { if (used[i]) dat.eb(key[i], val[i]); } build(2 * len(dat)); for (auto& [a, b]: dat) (*this)[a] = b; } }; #line 4 "nt/discrete_log.hpp" // モノイド X の作用する集合 S、ハッシュ関数 H:S -> Z // x in X, s, t in S に対して x^ns = t を解く // [lb, ub) の最初の解をかえす。なければ -1 をかえす。 template <typename ActedSet, typename F> ll discrete_log_acted(typename ActedSet::A x, typename ActedSet::S s, typename ActedSet::S t, F H, ll lb, ll ub) { using Mono = typename ActedSet::Monoid_A; using X = typename Mono::value_type; using S = typename ActedSet::S; if (lb >= ub) return -1; auto xpow = [&](ll n) -> X { X p = x; X res = Mono::unit(); while (n) { if (n & 1) res = Mono::op(res, p); p = Mono::op(p, p); n /= 2; } return res; }; auto Ht = H(t); s = ActedSet::act(s, xpow(lb)); u64 LIM = ub - lb; ll K = sqrt(LIM) + 1; HashMap<char> MP(K); FOR(k, K) { t = ActedSet::act(t, x); MP[H(t)] = 1; } X y = xpow(K); int failed = 0; FOR(k, K + 1) { S s1 = ActedSet::act(s, y); if (MP.count(H(s1))) { FOR(i, K) { if (H(s) == Ht) { ll ans = k * K + i + lb; return (ans >= ub ? -1 : ans); } s = ActedSet::act(s, x); } if (failed) return -1; failed = 1; } s = s1; } return -1; } // 群 X における log_a b の計算 // ハッシュ関数 H : X -> long long を持たせる // [lb, ub) の最初の解をかえす、なければ -1 template <typename Monoid, typename F> ll discrete_log_monoid(typename Monoid::X a, typename Monoid::X b, F H, ll lb, ll ub) { using AM = ActedSet_From_Monoid<Monoid>; return discrete_log_acted<AM>(a, Monoid::unit(), b, H, lb, ub); } #line 4 "mod/mod_log.hpp" int mod_log(int mod, ll a, ll b) { dmint::set_mod(mod); return discrete_log_monoid<Monoid_Mul<dmint>>( dmint(a), dmint(b), [](auto x) { return x.val; }, 0, mod); }