This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub maspypy/library
#include "graph/minimum_spanning_tree.hpp"
#include "ds/unionfind/unionfind.hpp" #include "graph/base.hpp" #include "graph/tree.hpp" #include "graph/ds/tree_monoid.hpp" #include "graph/ds/dual_tree_monoid.hpp" #include "alg/monoid/min.hpp" #include "alg/monoid/max.hpp" // return : {T mst_cost, vc<bool> in_mst, Graph MST} template <typename T, typename GT> tuple<T, vc<bool>, GT> minimum_spanning_tree(GT& G) { int N = G.N; int M = len(G.edges); vc<int> I(M); FOR(i, M) I[i] = i; sort(all(I), [&](auto& a, auto& b) -> bool { return (G.edges[a].cost) < (G.edges[b].cost); }); vc<bool> in_mst(M); UnionFind uf(N); T mst_cost = T(0); GT MST(N); for (auto& i: I) { auto& e = G.edges[i]; if (uf.merge(e.frm, e.to)) { in_mst[i] = 1; mst_cost += e.cost; } } FOR(i, M) if (in_mst[i]) { auto& e = G.edges[i]; MST.add(e.frm, e.to, e.cost); } MST.build(); return {mst_cost, in_mst, MST}; } // https://codeforces.com/contest/828/problem/F // return : {T mst_cost, vc<bool> in_mst, Graph MST, vc<T> dat} // dat : 辺ごとに、他の辺を保ったときに MST 辺になる最大重み template <typename T, typename GT> tuple<T, vc<bool>, GT, vc<T>> minimum_spanning_tree_cycle_data(GT& G) { int M = len(G.edges); auto [mst_cost, in_mst, MST] = minimum_spanning_tree(G); Tree<GT> tree(MST); vc<T> dat; FOR(i, M) if (in_mst[i]) dat.eb(G.edges[i].cost); Tree_Monoid<decltype(tree), Monoid_Max<T>, 1> TM1(tree, dat); Dual_Tree_Monoid<decltype(tree), Monoid_Min<T>, 1> TM2(tree); FOR(i, M) { if (!in_mst[i]) { auto& e = G.edges[i]; TM2.apply_path(e.frm, e.to, e.cost); } } vc<T> ANS(M); int m = 0; FOR(i, M) { auto& e = G.edges[i]; if (in_mst[i]) ANS[i] = TM2.get(m++); else ANS[i] = TM1.prod_path(e.frm, e.to); } return {mst_cost, in_mst, MST, ANS}; }
#line 2 "ds/unionfind/unionfind.hpp" struct UnionFind { int n, n_comp; vc<int> dat; // par or (-size) UnionFind(int n = 0) { build(n); } void build(int m) { n = m, n_comp = m; dat.assign(n, -1); } void reset() { build(n); } int operator[](int x) { while (dat[x] >= 0) { int pp = dat[dat[x]]; if (pp < 0) { return dat[x]; } x = dat[x] = pp; } return x; } ll size(int x) { x = (*this)[x]; return -dat[x]; } bool merge(int x, int y) { x = (*this)[x], y = (*this)[y]; if (x == y) return false; if (-dat[x] < -dat[y]) swap(x, y); dat[x] += dat[y], dat[y] = x, n_comp--; return true; } vc<int> get_all() { vc<int> A(n); FOR(i, n) A[i] = (*this)[i]; return A; } }; #line 2 "ds/hashmap.hpp" // u64 -> Val template <typename Val> struct HashMap { // n は入れたいものの個数で ok HashMap(u32 n = 0) { build(n); } void build(u32 n) { u32 k = 8; while (k < n * 2) k *= 2; cap = k / 2, mask = k - 1; key.resize(k), val.resize(k), used.assign(k, 0); } // size を保ったまま. size=0 にするときは build すること. void clear() { used.assign(len(used), 0); cap = (mask + 1) / 2; } int size() { return len(used) / 2 - cap; } int index(const u64& k) { int i = 0; for (i = hash(k); used[i] && key[i] != k; i = (i + 1) & mask) {} return i; } Val& operator[](const u64& k) { if (cap == 0) extend(); int i = index(k); if (!used[i]) { used[i] = 1, key[i] = k, val[i] = Val{}, --cap; } return val[i]; } Val get(const u64& k, Val default_value) { int i = index(k); return (used[i] ? val[i] : default_value); } bool count(const u64& k) { int i = index(k); return used[i] && key[i] == k; } // f(key, val) template <typename F> void enumerate_all(F f) { FOR(i, len(used)) if (used[i]) f(key[i], val[i]); } private: u32 cap, mask; vc<u64> key; vc<Val> val; vc<bool> used; u64 hash(u64 x) { static const u64 FIXED_RANDOM = std::chrono::steady_clock::now().time_since_epoch().count(); x += FIXED_RANDOM; x = (x ^ (x >> 30)) * 0xbf58476d1ce4e5b9; x = (x ^ (x >> 27)) * 0x94d049bb133111eb; return (x ^ (x >> 31)) & mask; } void extend() { vc<pair<u64, Val>> dat; dat.reserve(len(used) / 2 - cap); FOR(i, len(used)) { if (used[i]) dat.eb(key[i], val[i]); } build(2 * len(dat)); for (auto& [a, b]: dat) (*this)[a] = b; } }; #line 3 "graph/base.hpp" template <typename T> struct Edge { int frm, to; T cost; int id; }; template <typename T = int, bool directed = false> struct Graph { static constexpr bool is_directed = directed; int N, M; using cost_type = T; using edge_type = Edge<T>; vector<edge_type> edges; vector<int> indptr; vector<edge_type> csr_edges; vc<int> vc_deg, vc_indeg, vc_outdeg; bool prepared; class OutgoingEdges { public: OutgoingEdges(const Graph* G, int l, int r) : G(G), l(l), r(r) {} const edge_type* begin() const { if (l == r) { return 0; } return &G->csr_edges[l]; } const edge_type* end() const { if (l == r) { return 0; } return &G->csr_edges[r]; } private: const Graph* G; int l, r; }; bool is_prepared() { return prepared; } Graph() : N(0), M(0), prepared(0) {} Graph(int N) : N(N), M(0), prepared(0) {} void build(int n) { N = n, M = 0; prepared = 0; edges.clear(); indptr.clear(); csr_edges.clear(); vc_deg.clear(); vc_indeg.clear(); vc_outdeg.clear(); } void add(int frm, int to, T cost = 1, int i = -1) { assert(!prepared); assert(0 <= frm && 0 <= to && to < N); if (i == -1) i = M; auto e = edge_type({frm, to, cost, i}); edges.eb(e); ++M; } #ifdef FASTIO // wt, off void read_tree(bool wt = false, int off = 1) { read_graph(N - 1, wt, off); } void read_graph(int M, bool wt = false, int off = 1) { for (int m = 0; m < M; ++m) { INT(a, b); a -= off, b -= off; if (!wt) { add(a, b); } else { T c; read(c); add(a, b, c); } } build(); } #endif void build() { assert(!prepared); prepared = true; indptr.assign(N + 1, 0); for (auto&& e: edges) { indptr[e.frm + 1]++; if (!directed) indptr[e.to + 1]++; } for (int v = 0; v < N; ++v) { indptr[v + 1] += indptr[v]; } auto counter = indptr; csr_edges.resize(indptr.back() + 1); for (auto&& e: edges) { csr_edges[counter[e.frm]++] = e; if (!directed) csr_edges[counter[e.to]++] = edge_type({e.to, e.frm, e.cost, e.id}); } } OutgoingEdges operator[](int v) const { assert(prepared); return {this, indptr[v], indptr[v + 1]}; } vc<int> deg_array() { if (vc_deg.empty()) calc_deg(); return vc_deg; } pair<vc<int>, vc<int>> deg_array_inout() { if (vc_indeg.empty()) calc_deg_inout(); return {vc_indeg, vc_outdeg}; } int deg(int v) { if (vc_deg.empty()) calc_deg(); return vc_deg[v]; } int in_deg(int v) { if (vc_indeg.empty()) calc_deg_inout(); return vc_indeg[v]; } int out_deg(int v) { if (vc_outdeg.empty()) calc_deg_inout(); return vc_outdeg[v]; } #ifdef FASTIO void debug() { print("Graph"); if (!prepared) { print("frm to cost id"); for (auto&& e: edges) print(e.frm, e.to, e.cost, e.id); } else { print("indptr", indptr); print("frm to cost id"); FOR(v, N) for (auto&& e: (*this)[v]) print(e.frm, e.to, e.cost, e.id); } } #endif vc<int> new_idx; vc<bool> used_e; // G における頂点 V[i] が、新しいグラフで i になるようにする // {G, es} // sum(deg(v)) の計算量になっていて、 // 新しいグラフの n+m より大きい可能性があるので注意 Graph<T, directed> rearrange(vc<int> V, bool keep_eid = 0) { if (len(new_idx) != N) new_idx.assign(N, -1); int n = len(V); FOR(i, n) new_idx[V[i]] = i; Graph<T, directed> G(n); vc<int> history; FOR(i, n) { for (auto&& e: (*this)[V[i]]) { if (len(used_e) <= e.id) used_e.resize(e.id + 1); if (used_e[e.id]) continue; int a = e.frm, b = e.to; if (new_idx[a] != -1 && new_idx[b] != -1) { history.eb(e.id); used_e[e.id] = 1; int eid = (keep_eid ? e.id : -1); G.add(new_idx[a], new_idx[b], e.cost, eid); } } } FOR(i, n) new_idx[V[i]] = -1; for (auto&& eid: history) used_e[eid] = 0; G.build(); return G; } Graph<T, true> to_directed_tree(int root = -1) { if (root == -1) root = 0; assert(!is_directed && prepared && M == N - 1); Graph<T, true> G1(N); vc<int> par(N, -1); auto dfs = [&](auto& dfs, int v) -> void { for (auto& e: (*this)[v]) { if (e.to == par[v]) continue; par[e.to] = v, dfs(dfs, e.to); } }; dfs(dfs, root); for (auto& e: edges) { int a = e.frm, b = e.to; if (par[a] == b) swap(a, b); assert(par[b] == a); G1.add(a, b, e.cost); } G1.build(); return G1; } HashMap<int> MP_FOR_EID; int get_eid(u64 a, u64 b) { if (len(MP_FOR_EID) == 0) { MP_FOR_EID.build(N - 1); for (auto& e: edges) { u64 a = e.frm, b = e.to; u64 k = to_eid_key(a, b); MP_FOR_EID[k] = e.id; } } return MP_FOR_EID.get(to_eid_key(a, b), -1); } u64 to_eid_key(u64 a, u64 b) { if (!directed && a > b) swap(a, b); return N * a + b; } private: void calc_deg() { assert(vc_deg.empty()); vc_deg.resize(N); for (auto&& e: edges) vc_deg[e.frm]++, vc_deg[e.to]++; } void calc_deg_inout() { assert(vc_indeg.empty()); vc_indeg.resize(N); vc_outdeg.resize(N); for (auto&& e: edges) { vc_indeg[e.to]++, vc_outdeg[e.frm]++; } } }; #line 2 "graph/tree.hpp" #line 4 "graph/tree.hpp" // HLD euler tour をとっていろいろ。 template <typename GT> struct Tree { using Graph_type = GT; GT &G; using WT = typename GT::cost_type; int N; vector<int> LID, RID, head, V, parent, VtoE; vc<int> depth; vc<WT> depth_weighted; Tree(GT &G, int r = 0, bool hld = 1) : G(G) { build(r, hld); } void build(int r = 0, bool hld = 1) { if (r == -1) return; // build を遅延したいとき N = G.N; LID.assign(N, -1), RID.assign(N, -1), head.assign(N, r); V.assign(N, -1), parent.assign(N, -1), VtoE.assign(N, -1); depth.assign(N, -1), depth_weighted.assign(N, 0); assert(G.is_prepared()); int t1 = 0; dfs_sz(r, -1, hld); dfs_hld(r, t1); } void dfs_sz(int v, int p, bool hld) { auto &sz = RID; parent[v] = p; depth[v] = (p == -1 ? 0 : depth[p] + 1); sz[v] = 1; int l = G.indptr[v], r = G.indptr[v + 1]; auto &csr = G.csr_edges; // 使う辺があれば先頭にする for (int i = r - 2; i >= l; --i) { if (hld && depth[csr[i + 1].to] == -1) swap(csr[i], csr[i + 1]); } int hld_sz = 0; for (int i = l; i < r; ++i) { auto e = csr[i]; if (depth[e.to] != -1) continue; depth_weighted[e.to] = depth_weighted[v] + e.cost; VtoE[e.to] = e.id; dfs_sz(e.to, v, hld); sz[v] += sz[e.to]; if (hld && chmax(hld_sz, sz[e.to]) && l < i) { swap(csr[l], csr[i]); } } } void dfs_hld(int v, int ×) { LID[v] = times++; RID[v] += LID[v]; V[LID[v]] = v; bool heavy = true; for (auto &&e: G[v]) { if (depth[e.to] <= depth[v]) continue; head[e.to] = (heavy ? head[v] : e.to); heavy = false; dfs_hld(e.to, times); } } vc<int> heavy_path_at(int v) { vc<int> P = {v}; while (1) { int a = P.back(); for (auto &&e: G[a]) { if (e.to != parent[a] && head[e.to] == v) { P.eb(e.to); break; } } if (P.back() == a) break; } return P; } int heavy_child(int v) { int k = LID[v] + 1; if (k == N) return -1; int w = V[k]; return (parent[w] == v ? w : -1); } int e_to_v(int eid) { auto e = G.edges[eid]; return (parent[e.frm] == e.to ? e.frm : e.to); } int v_to_e(int v) { return VtoE[v]; } int get_eid(int u, int v) { if (parent[u] != v) swap(u, v); assert(parent[u] == v); return VtoE[u]; } int ELID(int v) { return 2 * LID[v] - depth[v]; } int ERID(int v) { return 2 * RID[v] - depth[v] - 1; } // 目標地点へ進む個数が k int LA(int v, int k) { assert(k <= depth[v]); while (1) { int u = head[v]; if (LID[v] - k >= LID[u]) return V[LID[v] - k]; k -= LID[v] - LID[u] + 1; v = parent[u]; } } int la(int u, int v) { return LA(u, v); } int LCA(int u, int v) { for (;; v = parent[head[v]]) { if (LID[u] > LID[v]) swap(u, v); if (head[u] == head[v]) return u; } } int meet(int a, int b, int c) { return LCA(a, b) ^ LCA(a, c) ^ LCA(b, c); } int lca(int u, int v) { return LCA(u, v); } int subtree_size(int v, int root = -1) { if (root == -1) return RID[v] - LID[v]; if (v == root) return N; int x = jump(v, root, 1); if (in_subtree(v, x)) return RID[v] - LID[v]; return N - RID[x] + LID[x]; } int dist(int a, int b) { int c = LCA(a, b); return depth[a] + depth[b] - 2 * depth[c]; } WT dist_weighted(int a, int b) { int c = LCA(a, b); return depth_weighted[a] + depth_weighted[b] - WT(2) * depth_weighted[c]; } // a is in b bool in_subtree(int a, int b) { return LID[b] <= LID[a] && LID[a] < RID[b]; } int jump(int a, int b, ll k) { if (k == 1) { if (a == b) return -1; return (in_subtree(b, a) ? LA(b, depth[b] - depth[a] - 1) : parent[a]); } int c = LCA(a, b); int d_ac = depth[a] - depth[c]; int d_bc = depth[b] - depth[c]; if (k > d_ac + d_bc) return -1; if (k <= d_ac) return LA(a, k); return LA(b, d_ac + d_bc - k); } vc<int> collect_child(int v) { vc<int> res; for (auto &&e: G[v]) if (e.to != parent[v]) res.eb(e.to); return res; } vc<int> collect_light(int v) { vc<int> res; bool skip = true; for (auto &&e: G[v]) if (e.to != parent[v]) { if (!skip) res.eb(e.to); skip = false; } return res; } vc<pair<int, int>> get_path_decomposition(int u, int v, bool edge) { // [始点, 終点] の"閉"区間列。 vc<pair<int, int>> up, down; while (1) { if (head[u] == head[v]) break; if (LID[u] < LID[v]) { down.eb(LID[head[v]], LID[v]); v = parent[head[v]]; } else { up.eb(LID[u], LID[head[u]]); u = parent[head[u]]; } } if (LID[u] < LID[v]) down.eb(LID[u] + edge, LID[v]); elif (LID[v] + edge <= LID[u]) up.eb(LID[u], LID[v] + edge); reverse(all(down)); up.insert(up.end(), all(down)); return up; } // 辺の列の情報 (frm,to,str) // str = "heavy_up", "heavy_down", "light_up", "light_down" vc<tuple<int, int, string>> get_path_decomposition_detail(int u, int v) { vc<tuple<int, int, string>> up, down; while (1) { if (head[u] == head[v]) break; if (LID[u] < LID[v]) { if (v != head[v]) down.eb(head[v], v, "heavy_down"), v = head[v]; down.eb(parent[v], v, "light_down"), v = parent[v]; } else { if (u != head[u]) up.eb(u, head[u], "heavy_up"), u = head[u]; up.eb(u, parent[u], "light_up"), u = parent[u]; } } if (LID[u] < LID[v]) down.eb(u, v, "heavy_down"); elif (LID[v] < LID[u]) up.eb(u, v, "heavy_up"); reverse(all(down)); concat(up, down); return up; } vc<int> restore_path(int u, int v) { vc<int> P; for (auto &&[a, b]: get_path_decomposition(u, v, 0)) { if (a <= b) { FOR(i, a, b + 1) P.eb(V[i]); } else { FOR_R(i, b, a + 1) P.eb(V[i]); } } return P; } // path [a,b] と [c,d] の交わり. 空ならば {-1,-1}. // https://codeforces.com/problemset/problem/500/G pair<int, int> path_intersection(int a, int b, int c, int d) { int ab = lca(a, b), ac = lca(a, c), ad = lca(a, d); int bc = lca(b, c), bd = lca(b, d), cd = lca(c, d); int x = ab ^ ac ^ bc, y = ab ^ ad ^ bd; // meet(a,b,c), meet(a,b,d) if (x != y) return {x, y}; int z = ac ^ ad ^ cd; if (x != z) x = -1; return {x, x}; } // uv path 上で check(v) を満たす最後の v // なければ (つまり check(v) が ng )-1 template <class F> int max_path(F check, int u, int v) { if (!check(u)) return -1; auto pd = get_path_decomposition(u, v, false); for (auto [a, b]: pd) { if (!check(V[a])) return u; if (check(V[b])) { u = V[b]; continue; } int c = binary_search([&](int c) -> bool { return check(V[c]); }, a, b, 0); return V[c]; } return u; } }; #line 2 "graph/ds/tree_monoid.hpp" #line 2 "ds/segtree/segtree.hpp" template <class Monoid> struct SegTree { using MX = Monoid; using X = typename MX::value_type; using value_type = X; vc<X> dat; int n, log, size; SegTree() {} SegTree(int n) { build(n); } template <typename F> SegTree(int n, F f) { build(n, f); } SegTree(const vc<X>& v) { build(v); } void build(int m) { build(m, [](int i) -> X { return MX::unit(); }); } void build(const vc<X>& v) { build(len(v), [&](int i) -> X { return v[i]; }); } template <typename F> void build(int m, F f) { n = m, log = 1; while ((1 << log) < n) ++log; size = 1 << log; dat.assign(size << 1, MX::unit()); FOR(i, n) dat[size + i] = f(i); FOR_R(i, 1, size) update(i); } X get(int i) { return dat[size + i]; } vc<X> get_all() { return {dat.begin() + size, dat.begin() + size + n}; } void update(int i) { dat[i] = Monoid::op(dat[2 * i], dat[2 * i + 1]); } void set(int i, const X& x) { assert(i < n); dat[i += size] = x; while (i >>= 1) update(i); } void multiply(int i, const X& x) { assert(i < n); i += size; dat[i] = Monoid::op(dat[i], x); while (i >>= 1) update(i); } X prod(int L, int R) { assert(0 <= L && L <= R && R <= n); X vl = Monoid::unit(), vr = Monoid::unit(); L += size, R += size; while (L < R) { if (L & 1) vl = Monoid::op(vl, dat[L++]); if (R & 1) vr = Monoid::op(dat[--R], vr); L >>= 1, R >>= 1; } return Monoid::op(vl, vr); } X prod_all() { return dat[1]; } template <class F> int max_right(F check, int L) { assert(0 <= L && L <= n && check(Monoid::unit())); if (L == n) return n; L += size; X sm = Monoid::unit(); do { while (L % 2 == 0) L >>= 1; if (!check(Monoid::op(sm, dat[L]))) { while (L < size) { L = 2 * L; if (check(Monoid::op(sm, dat[L]))) { sm = Monoid::op(sm, dat[L++]); } } return L - size; } sm = Monoid::op(sm, dat[L++]); } while ((L & -L) != L); return n; } template <class F> int min_left(F check, int R) { assert(0 <= R && R <= n && check(Monoid::unit())); if (R == 0) return 0; R += size; X sm = Monoid::unit(); do { --R; while (R > 1 && (R % 2)) R >>= 1; if (!check(Monoid::op(dat[R], sm))) { while (R < size) { R = 2 * R + 1; if (check(Monoid::op(dat[R], sm))) { sm = Monoid::op(dat[R--], sm); } } return R + 1 - size; } sm = Monoid::op(dat[R], sm); } while ((R & -R) != R); return 0; } // prod_{l<=i<r} A[i xor x] X xor_prod(int l, int r, int xor_val) { static_assert(Monoid::commute); X x = Monoid::unit(); for (int k = 0; k < log + 1; ++k) { if (l >= r) break; if (l & 1) { x = Monoid::op(x, dat[(size >> k) + ((l++) ^ xor_val)]); } if (r & 1) { x = Monoid::op(x, dat[(size >> k) + ((--r) ^ xor_val)]); } l /= 2, r /= 2, xor_val /= 2; } return x; } }; #line 2 "alg/monoid/monoid_reverse.hpp" template <class Monoid> struct Monoid_Reverse { using value_type = typename Monoid::value_type; using X = value_type; static constexpr X op(const X &x, const X &y) { return Monoid::op(y, x); } static constexpr X unit() { return Monoid::unit(); } static const bool commute = Monoid::commute; }; #line 6 "graph/ds/tree_monoid.hpp" template <typename TREE, typename Monoid, bool edge> struct Tree_Monoid { using MX = Monoid; using X = typename MX::value_type; TREE &tree; int N; SegTree<MX> seg; SegTree<Monoid_Reverse<MX>> seg_r; Tree_Monoid(TREE &tree) : tree(tree), N(tree.N) { build([](int i) -> X { return MX::unit(); }); } Tree_Monoid(TREE &tree, vc<X> &dat) : tree(tree), N(tree.N) { build([&](int i) -> X { return dat[i]; }); } template <typename F> Tree_Monoid(TREE &tree, F f) : tree(tree), N(tree.N) { build(f); } template <typename F> void build(F f) { if (!edge) { auto f_v = [&](int i) -> X { return f(tree.V[i]); }; seg.build(N, f_v); if constexpr (!MX::commute) { seg_r.build(N, f_v); } } else { auto f_e = [&](int i) -> X { return (i == 0 ? MX::unit() : f(tree.v_to_e(tree.V[i]))); }; seg.build(N, f_e); if constexpr (!MX::commute) { seg_r.build(N, f_e); } } } void set(int i, X x) { if constexpr (edge) i = tree.e_to_v(i); i = tree.LID[i]; seg.set(i, x); if constexpr (!MX::commute) seg_r.set(i, x); } void multiply(int i, X x) { if constexpr (edge) i = tree.e_to_v(i); i = tree.LID[i]; seg.multiply(i, x); if constexpr (!MX::commute) seg_r.multiply(i, x); } X prod_path(int u, int v) { auto pd = tree.get_path_decomposition(u, v, edge); X val = MX::unit(); for (auto &&[a, b]: pd) { val = MX::op(val, get_prod(a, b)); } return val; } // uv path 上で prod_path(u, x) が check を満たす最後の x // なければ (つまり path(u,u) が ng )-1 template <class F> int max_path(F check, int u, int v) { if constexpr (edge) return max_path_edge(check, u, v); if (!check(prod_path(u, u))) return -1; auto pd = tree.get_path_decomposition(u, v, edge); X val = MX::unit(); for (auto &&[a, b]: pd) { X x = get_prod(a, b); if (check(MX::op(val, x))) { val = MX::op(val, x); u = (tree.V[b]); continue; } auto check_tmp = [&](X x) -> bool { return check(MX::op(val, x)); }; if (a <= b) { // 下り auto i = seg.max_right(check_tmp, a); return (i == a ? u : tree.V[i - 1]); } else { // 上り int i = 0; if constexpr (MX::commute) i = seg.min_left(check_tmp, a + 1); if constexpr (!MX::commute) i = seg_r.min_left(check_tmp, a + 1); if (i == a + 1) return u; return tree.V[i]; } } return v; } X prod_subtree(int u, int root = -1) { if (root == u) return prod_all(); if (root == -1 || tree.in_subtree(u, root)) { int l = tree.LID[u], r = tree.RID[u]; return seg.prod(l + edge, r); } assert(!edge); // さぼり u = tree.jump(u, root, 1); int L = tree.LID[u], R = tree.RID[u]; return MX::op(seg.prod(0, L), seg.prod(R, N)); } X prod_all() { return prod_subtree(tree.V[0]); } inline X get_prod(int a, int b) { if constexpr (MX::commute) { return (a <= b) ? seg.prod(a, b + 1) : seg.prod(b, a + 1); } return (a <= b) ? seg.prod(a, b + 1) : seg_r.prod(b, a + 1); } private: template <class F> int max_path_edge(F check, int u, int v) { static_assert(edge); if (!check(MX::unit())) return -1; int lca = tree.lca(u, v); auto pd = tree.get_path_decomposition(u, lca, edge); X val = MX::unit(); // climb for (auto &&[a, b]: pd) { assert(a >= b); X x = get_prod(a, b); if (check(MX::op(val, x))) { val = MX::op(val, x); u = (tree.parent[tree.V[b]]); continue; } auto check_tmp = [&](X x) -> bool { return check(MX::op(val, x)); }; int i = 0; if constexpr (MX::commute) i = seg.min_left(check_tmp, a + 1); if constexpr (!MX::commute) i = seg_r.min_left(check_tmp, a + 1); if (i == a + 1) return u; return tree.parent[tree.V[i]]; } // down pd = tree.get_path_decomposition(lca, v, edge); for (auto &&[a, b]: pd) { assert(a <= b); X x = get_prod(a, b); if (check(MX::op(val, x))) { val = MX::op(val, x); u = (tree.V[b]); continue; } auto check_tmp = [&](X x) -> bool { return check(MX::op(val, x)); }; auto i = seg.max_right(check_tmp, a); return (i == a ? u : tree.V[i - 1]); } return v; } }; #line 2 "ds/segtree/dual_segtree.hpp" template <typename Monoid> struct Dual_SegTree { using MA = Monoid; using A = typename MA::value_type; int n, log, size; vc<A> laz; Dual_SegTree() : Dual_SegTree(0) {} Dual_SegTree(int n) { build(n, [&](int i) -> A { return MA::unit(); }); } template <typename F> Dual_SegTree(int n, F f) { build(n, f); } template <typename F> void build(int m, F f) { n = m; log = 1; while ((1 << log) < n) ++log; size = 1 << log; laz.assign(size << 1, MA::unit()); FOR(i, n) laz[size + i] = f(i); } void build(int n) { build(n, [&](int i) -> A { return MA::unit(); }); } A get(int p) { assert(0 <= p && p < n); p += size; for (int i = log; i >= 1; i--) push(p >> i); return laz[p]; } vc<A> get_all() { FOR(i, size) push(i); return {laz.begin() + size, laz.begin() + size + n}; } void set(int p, A x) { get(p); laz[p + size] = x; } void apply(int l, int r, const A& a) { assert(0 <= l && l <= r && r <= n); if (l == r) return; l += size, r += size; if (!MA::commute) { for (int i = log; i >= 1; i--) { if (((l >> i) << i) != l) push(l >> i); if (((r >> i) << i) != r) push((r - 1) >> i); } } while (l < r) { if (l & 1) all_apply(l++, a); if (r & 1) all_apply(--r, a); l >>= 1, r >>= 1; } } private: void push(int k) { if (laz[k] == MA::unit()) return; all_apply(2 * k, laz[k]), all_apply(2 * k + 1, laz[k]); laz[k] = MA::unit(); } void all_apply(int k, A a) { laz[k] = MA::op(laz[k], a); } }; #line 3 "graph/ds/dual_tree_monoid.hpp" template <typename TREE, typename Monoid, bool edge> struct Dual_Tree_Monoid { using MX = Monoid; using X = typename MX::value_type; TREE &tree; int N; Dual_SegTree<MX> seg; Dual_Tree_Monoid(TREE &tree) : tree(tree), N(tree.N), seg(tree.N) {} X get(int i) { int v = i; if (edge) { auto &&e = tree.G.edges[i]; v = (tree.parent[e.frm] == e.to ? e.frm : e.to); } return seg.get(tree.LID[v]); } vc<X> get_all() { vc<X> tmp = seg.get_all(); vc<X> res; FOR(i, N) { if (edge && i == N - 1) break; int v = i; if (edge) { auto &&e = tree.G.edges[i]; v = (tree.parent[e.frm] == e.to ? e.frm : e.to); } res.eb(tmp[tree.LID[v]]); } return res; } void apply_path(int u, int v, X x) { auto pd = tree.get_path_decomposition(u, v, edge); for (auto &&[a, b]: pd) { (a <= b ? seg.apply(a, b + 1, x) : seg.apply(b, a + 1, x)); } return; } void apply_subtree(int u, X x) { int l = tree.LID[u], r = tree.RID[u]; return seg.apply(l + edge, r, x); } void apply_outtree(int u, X a) { int l = tree.LID[u], r = tree.RID[u]; seg.apply(0 + edge, l + edge, a); seg.apply(r, N, a); } }; #line 2 "alg/monoid/min.hpp" template <typename E> struct Monoid_Min { using X = E; using value_type = X; static constexpr X op(const X &x, const X &y) noexcept { return min(x, y); } static constexpr X unit() { return infty<E>; } static constexpr bool commute = true; }; #line 2 "alg/monoid/max.hpp" template <typename E> struct Monoid_Max { using X = E; using value_type = X; static constexpr X op(const X &x, const X &y) noexcept { return max(x, y); } static constexpr X unit() { return -infty<E>; } static constexpr bool commute = true; }; #line 8 "graph/minimum_spanning_tree.hpp" // return : {T mst_cost, vc<bool> in_mst, Graph MST} template <typename T, typename GT> tuple<T, vc<bool>, GT> minimum_spanning_tree(GT& G) { int N = G.N; int M = len(G.edges); vc<int> I(M); FOR(i, M) I[i] = i; sort(all(I), [&](auto& a, auto& b) -> bool { return (G.edges[a].cost) < (G.edges[b].cost); }); vc<bool> in_mst(M); UnionFind uf(N); T mst_cost = T(0); GT MST(N); for (auto& i: I) { auto& e = G.edges[i]; if (uf.merge(e.frm, e.to)) { in_mst[i] = 1; mst_cost += e.cost; } } FOR(i, M) if (in_mst[i]) { auto& e = G.edges[i]; MST.add(e.frm, e.to, e.cost); } MST.build(); return {mst_cost, in_mst, MST}; } // https://codeforces.com/contest/828/problem/F // return : {T mst_cost, vc<bool> in_mst, Graph MST, vc<T> dat} // dat : 辺ごとに、他の辺を保ったときに MST 辺になる最大重み template <typename T, typename GT> tuple<T, vc<bool>, GT, vc<T>> minimum_spanning_tree_cycle_data(GT& G) { int M = len(G.edges); auto [mst_cost, in_mst, MST] = minimum_spanning_tree(G); Tree<GT> tree(MST); vc<T> dat; FOR(i, M) if (in_mst[i]) dat.eb(G.edges[i].cost); Tree_Monoid<decltype(tree), Monoid_Max<T>, 1> TM1(tree, dat); Dual_Tree_Monoid<decltype(tree), Monoid_Min<T>, 1> TM2(tree); FOR(i, M) { if (!in_mst[i]) { auto& e = G.edges[i]; TM2.apply_path(e.frm, e.to, e.cost); } } vc<T> ANS(M); int m = 0; FOR(i, M) { auto& e = G.edges[i]; if (in_mst[i]) ANS[i] = TM2.get(m++); else ANS[i] = TM1.prod_path(e.frm, e.to); } return {mst_cost, in_mst, MST, ANS}; }