This documentation is automatically generated by online-judge-tools/verification-helper
#include "graph/ds/tree_wavelet_matrix.hpp"
#include "ds/wavelet_matrix/wavelet_matrix.hpp"
#include "graph/tree.hpp"
// https://atcoder.jp/contests/pakencamp-2022-day1/tasks/pakencamp_2022_day1_j
// https://atcoder.jp/contests/utpc2011/tasks/utpc2011_12
template <typename TREE, bool edge, typename T, bool COMPRESS,
typename Monoid = Monoid_Add<T>>
struct Tree_Wavelet_Matrix {
TREE& tree;
int N;
using WM = Wavelet_Matrix<T, COMPRESS, Monoid_Add<T>>;
using X = typename Monoid::value_type;
WM wm;
Tree_Wavelet_Matrix(TREE& tree, vc<T> A, vc<X> SUM_data = {}, int log = -1)
: tree(tree), N(tree.N) {
vc<X>& S = SUM_data;
vc<T> A1;
vc<X> S1;
A1.resize(N);
if (!S.empty()) S1.resize(N);
if (!edge) {
assert(len(A) == N && (len(S) == 0 || len(S) == N));
FOR(v, N) A1[tree.LID[v]] = A[v];
if (len(S) == N) { FOR(v, N) S1[tree.LID[v]] = S[v]; }
wm.build(A1, S1, log);
} else {
assert(len(A) == N - 1 && (len(S) == 0 || len(S) == N - 1));
if (!S.empty()) {
FOR(e, N - 1) { S1[tree.LID[tree.e_to_v(e)]] = S[e]; }
}
FOR(e, N - 1) { A1[tree.LID[tree.e_to_v(e)]] = A[e]; }
wm.build(A1, S1, log);
}
}
// xor した結果で [a, b) に収まるものを数える
int count_path(int s, int t, T a, T b, T xor_val = 0) {
return wm.count(get_segments(s, t), a, b, xor_val);
}
// xor した結果で [a, b) に収まるものを数える
int count_subtree(int u, T a, T b, T xor_val = 0) {
int l = tree.LID[u], r = tree.RID[u];
return wm.count(l + edge, r, a, b, xor_val);
}
// xor した結果で、[L, R) の中で k>=0 番目と prefix sum
pair<T, X> kth_value_and_sum_path(int s, int t, int k, T xor_val = 0) {
return wm.kth_value_and_sum(get_segments(s, t), k, xor_val);
}
// xor した結果で、[L, R) の中で k>=0 番目と prefix sum
pair<T, X> kth_value_and_sum_subtree(int u, int k, T xor_val = 0) {
int l = tree.LID[u], r = tree.RID[u];
return wm.kth_value_and_sum(l + edge, r, k, xor_val);
}
// xor した結果で、[L, R) の中で k>=0 番目
T kth_path(int s, int t, int k, T xor_val = 0) {
return wm.kth(get_segments(s, t), k, xor_val);
}
// xor した結果で、[L, R) の中で k>=0 番目
T kth_subtree(int u, int k, T xor_val = 0) {
int l = tree.LID[u], r = tree.RID[u];
return wm.kth(l + edge, r, k, xor_val);
}
// xor した結果で、[L, R) の中で中央値。
// LOWER = true:下側中央値、false:上側中央値
T median_path(bool UPPER, int s, int t, T xor_val = 0) {
return wm.median(UPPER, get_segments(s, t), xor_val);
}
T median_subtree(bool UPPER, int u, T xor_val = 0) {
int l = tree.LID[u], r = tree.RID[u];
return wm.median(UPPER, l + edge, r, xor_val);
}
// xor した結果で [k1, k2) 番目であるところの SUM_data の和
X sum_path(int s, int t, int k1, int k2, T xor_val = 0) {
return wm.sum(get_segments(s, t), k1, k2, xor_val);
}
// xor した結果で [k1, k2) 番目であるところの SUM_data の和
X sum_subtree(int u, int k1, int k2, T xor_val = 0) {
int l = tree.LID[u], r = tree.RID[u];
return wm.sum(l + edge, r, k1, k2, xor_val);
}
X sum_all_path(int s, int t) { return wm.sum_all(get_segments(s, t)); }
X sum_all_subtree(int u) {
int l = tree.LID[u], r = tree.RID[u];
return wm.sum_all(l + edge, r);
}
private:
vc<pair<int, int>> get_segments(int s, int t) {
vc<pair<int, int>> segments = tree.get_path_decomposition(s, t, edge);
for (auto&& [a, b]: segments) {
if (a >= b) swap(a, b);
++b;
}
return segments;
}
};
#line 1 "graph/ds/tree_wavelet_matrix.hpp"
#line 1 "ds/bit_vector.hpp"
struct Bit_Vector {
int n;
bool prepared = 0;
vc<pair<u64, u32>> dat;
Bit_Vector(int n = 0) : n(n) { dat.assign((n + 127) >> 6, {0, 0}); }
void set(int i) {
assert(!prepared && (0 <= i && i < n));
dat[i >> 6].fi |= u64(1) << (i & 63);
}
void reset() {
fill(all(dat), pair<u64, u32>{0, 0});
prepared = 0;
}
void build() {
prepared = 1;
FOR(i, len(dat) - 1) dat[i + 1].se = dat[i].se + popcnt(dat[i].fi);
}
// [0, k) 内の 1 の個数
bool operator[](int i) { return dat[i >> 6].fi >> (i & 63) & 1; }
int count_prefix(int k, bool f = true) {
assert(prepared);
auto [a, b] = dat[k >> 6];
int ret = b + popcnt(a & ((u64(1) << (k & 63)) - 1));
return (f ? ret : k - ret);
}
int count(int L, int R, bool f = true) { return count_prefix(R, f) - count_prefix(L, f); }
string to_string() {
string ans;
FOR(i, n) ans += '0' + (dat[i / 64].fi >> (i % 64) & 1);
return ans;
}
};
#line 1 "ds/index_compression.hpp"
template <typename T>
struct Index_Compression_DISTINCT_SMALL {
static_assert(is_same_v<T, int>);
int mi, ma;
vc<int> dat;
vc<int> build(vc<int> X) {
mi = 0, ma = -1;
if (!X.empty()) mi = MIN(X), ma = MAX(X);
dat.assign(ma - mi + 2, 0);
for (auto& x: X) dat[x - mi + 1]++;
FOR(i, len(dat) - 1) dat[i + 1] += dat[i];
for (auto& x: X) { x = dat[x - mi]++; }
FOR_R(i, 1, len(dat)) dat[i] = dat[i - 1];
dat[0] = 0;
return X;
}
int operator()(ll x) { return dat[clamp<ll>(x - mi, 0, ma - mi + 1)]; }
};
template <typename T>
struct Index_Compression_SAME_SMALL {
static_assert(is_same_v<T, int>);
int mi, ma;
vc<int> dat;
vc<int> build(vc<int> X) {
mi = 0, ma = -1;
if (!X.empty()) mi = MIN(X), ma = MAX(X);
dat.assign(ma - mi + 2, 0);
for (auto& x: X) dat[x - mi + 1] = 1;
FOR(i, len(dat) - 1) dat[i + 1] += dat[i];
for (auto& x: X) { x = dat[x - mi]; }
return X;
}
int operator()(ll x) { return dat[clamp<ll>(x - mi, 0, ma - mi + 1)]; }
};
template <typename T>
struct Index_Compression_SAME_LARGE {
vc<T> dat;
vc<int> build(vc<T> X) {
vc<int> I = argsort(X);
vc<int> res(len(X));
for (auto& i: I) {
if (!dat.empty() && dat.back() == X[i]) {
res[i] = len(dat) - 1;
} else {
res[i] = len(dat);
dat.eb(X[i]);
}
}
dat.shrink_to_fit();
return res;
}
int operator()(T x) { return LB(dat, x); }
};
template <typename T>
struct Index_Compression_DISTINCT_LARGE {
vc<T> dat;
vc<int> build(vc<T> X) {
vc<int> I = argsort(X);
vc<int> res(len(X));
for (auto& i: I) { res[i] = len(dat), dat.eb(X[i]); }
dat.shrink_to_fit();
return res;
}
int operator()(T x) { return LB(dat, x); }
};
template <typename T, bool SMALL>
using Index_Compression_DISTINCT =
typename std::conditional<SMALL, Index_Compression_DISTINCT_SMALL<T>,
Index_Compression_DISTINCT_LARGE<T>>::type;
template <typename T, bool SMALL>
using Index_Compression_SAME =
typename std::conditional<SMALL, Index_Compression_SAME_SMALL<T>,
Index_Compression_SAME_LARGE<T>>::type;
// SAME: [2,3,2] -> [0,1,0]
// DISTINCT: [2,2,3] -> [0,2,1]
// (x): lower_bound(X,x) をかえす
template <typename T, bool SAME, bool SMALL>
using Index_Compression =
typename std::conditional<SAME, Index_Compression_SAME<T, SMALL>,
Index_Compression_DISTINCT<T, SMALL>>::type;
#line 2 "alg/monoid/add.hpp"
template <typename E>
struct Monoid_Add {
using X = E;
using value_type = X;
static constexpr X op(const X &x, const X &y) noexcept { return x + y; }
static constexpr X inverse(const X &x) noexcept { return -x; }
static constexpr X power(const X &x, ll n) noexcept { return X(n) * x; }
static constexpr X unit() { return X(0); }
static constexpr bool commute = true;
};
#line 4 "ds/wavelet_matrix/wavelet_matrix.hpp"
// 静的メソッドinverseの存在をチェックするテンプレート
template <typename, typename = std::void_t<>>
struct has_inverse : std::false_type {};
template <typename T>
struct has_inverse<T, std::void_t<decltype(T::inverse(std::declval<typename T::value_type>()))>> : std::true_type {};
struct Dummy_Data_Structure {
using MX = Monoid_Add<bool>;
void build(const vc<bool>& A) {}
};
template <typename Y, bool SMALL_Y, typename SEGTREE = Dummy_Data_Structure>
struct Wavelet_Matrix {
using Mono = typename SEGTREE::MX;
using T = typename Mono::value_type;
static_assert(Mono::commute);
int n, log, K;
Index_Compression<Y, true, SMALL_Y> IDX;
vc<Y> ItoY;
vc<int> mid;
vc<Bit_Vector> bv;
vc<SEGTREE> seg;
Wavelet_Matrix() {}
Wavelet_Matrix(const vc<Y>& A) { build(A); }
Wavelet_Matrix(const vc<Y>& A, vc<T>& SUM_Data) { build(A, SUM_Data); }
template <typename F>
Wavelet_Matrix(int n, F f) {
build(n, f);
}
template <typename F>
void build(int m, F f) {
vc<Y> A(m);
vc<T> S(m);
for (int i = 0; i < m; ++i) {
auto p = f(i);
A[i] = p.fi, S[i] = p.se;
}
build(A, S);
}
void build(const vc<Y>& A) { build(A, vc<T>(len(A), Mono::unit())); }
void build(const vc<Y>& A, vc<T> S) {
n = len(A);
vc<int> B = IDX.build(A);
K = 0;
for (auto& x: B) chmax(K, x + 1);
ItoY.resize(K);
FOR(i, n) ItoY[B[i]] = A[i];
log = 0;
while ((1 << log) < K) ++log;
mid.resize(log), bv.assign(log, Bit_Vector(n));
vc<int> B0(n), B1(n);
vc<T> S0(n), S1(n);
seg.resize(log + 1);
seg[log].build(S);
for (int d = log - 1; d >= 0; --d) {
int p0 = 0, p1 = 0;
for (int i = 0; i < n; ++i) {
bool f = (B[i] >> d & 1);
if (!f) { B0[p0] = B[i], S0[p0] = S[i], p0++; }
if (f) { bv[d].set(i), B1[p1] = B[i], S1[p1] = S[i], p1++; }
}
swap(B, B0), swap(S, S0);
move(B1.begin(), B1.begin() + p1, B.begin() + p0);
move(S1.begin(), S1.begin() + p1, S.begin() + p0);
mid[d] = p0, bv[d].build(), seg[d].build(S);
}
}
// [L,R) x [0,y)
int prefix_count(int L, int R, Y y) {
int p = IDX(y);
if (L == R || p == 0) return 0;
if (p == K) return R - L;
int cnt = 0;
for (int d = log - 1; d >= 0; --d) {
int l0 = bv[d].count_prefix(L, 0), r0 = bv[d].count_prefix(R, 0);
int l1 = L + mid[d] - l0, r1 = R + mid[d] - r0;
if (p >> d & 1) cnt += r0 - l0, L = l1, R = r1;
if (!(p >> d & 1)) L = l0, R = r0;
}
return cnt;
}
// [L,R) x [y1,y2)
int count(int L, int R, Y y1, Y y2) { return prefix_count(L, R, y2) - prefix_count(L, R, y1); }
// [L,R) x [0,y)
pair<int, T> prefix_count_and_prod(int L, int R, Y y) {
int p = IDX(y);
if (p == 0) return {0, Mono::unit()};
if (p == K) return {R - L, seg[log].prod(L, R)};
int cnt = 0;
T t = Mono::unit();
for (int d = log - 1; d >= 0; --d) {
int l0 = bv[d].count_prefix(L, 0), r0 = bv[d].count_prefix(R, 0);
int l1 = L + mid[d] - l0, r1 = R + mid[d] - r0;
if (p >> d & 1) { cnt += r0 - l0, t = Mono::op(t, seg[d].prod(l0, r0)), L = l1, R = r1; }
if (!(p >> d & 1)) L = l0, R = r0;
}
return {cnt, t};
}
// [L,R) x [y1,y2)
pair<int, T> count_and_prod(int L, int R, Y y1, Y y2) {
if constexpr (has_inverse<Mono>::value) {
auto [c1, t1] = prefix_count_and_prod(L, R, y1);
auto [c2, t2] = prefix_count_and_prod(L, R, y2);
return {c2 - c1, Mono::op(Mono::inverse(t1), t2)};
}
int lo = IDX(y1), hi = IDX(y2), cnt = 0;
T t = Mono::unit();
auto dfs = [&](auto& dfs, int d, int L, int R, int a, int b) -> void {
assert(b - a == (1 << d));
if (hi <= a || b <= lo) return;
if (lo <= a && b <= hi) {
cnt += R - L, t = Mono::op(t, seg[d].prod(L, R));
return;
}
--d;
int c = (a + b) / 2;
int l0 = bv[d].count_prefix(L, 0), r0 = bv[d].count_prefix(R, 0);
int l1 = L + mid[d] - l0, r1 = R + mid[d] - r0;
dfs(dfs, d, l0, r0, a, c), dfs(dfs, d, l1, r1, c, b);
};
dfs(dfs, log, L, R, 0, 1 << log);
return {cnt, t};
}
// [L,R) x [y1,y2)
T prefix_prod(int L, int R, Y y) { return prefix_count_and_prod(L, R, y).se; }
// [L,R) x [y1,y2)
T prod(int L, int R, Y y1, Y y2) { return count_and_prod(L, R, y1, y2).se; }
T prod_all(int L, int R) { return seg[log].prod(L, R); }
Y kth(int L, int R, int k) {
assert(0 <= k && k < R - L);
int p = 0;
for (int d = log - 1; d >= 0; --d) {
int l0 = bv[d].count_prefix(L, 0), r0 = bv[d].count_prefix(R, 0);
int l1 = L + mid[d] - l0, r1 = R + mid[d] - r0;
if (k < r0 - l0) {
L = l0, R = r0;
} else {
k -= r0 - l0, L = l1, R = r1, p |= 1 << d;
}
}
return ItoY[p];
}
// y 以上最小 OR infty<Y>
Y next(int L, int R, Y y) {
int k = IDX(y);
int p = K;
auto dfs = [&](auto& dfs, int d, int L, int R, int a, int b) -> void {
if (p <= a || L == R || b <= k) return;
if (d == 0) {
chmin(p, a);
return;
}
--d;
int c = (a + b) / 2;
int l0 = bv[d].count_prefix(L, 0), r0 = bv[d].count_prefix(R, 0);
int l1 = L + mid[d] - l0, r1 = R + mid[d] - r0;
dfs(dfs, d, l0, r0, a, c), dfs(dfs, d, l1, r1, c, b);
};
dfs(dfs, log, L, R, 0, 1 << log);
return (p == K ? infty<Y> : ItoY[p]);
}
// y 以下最大 OR -infty<T>
Y prev(int L, int R, Y y) {
int k = IDX(y + 1);
int p = -1;
auto dfs = [&](auto& dfs, int d, int L, int R, int a, int b) -> void {
if (b - 1 <= p || L == R || k <= a) return;
if (d == 0) {
chmax(p, a);
return;
}
--d;
int c = (a + b) / 2;
int l0 = bv[d].count_prefix(L, 0), r0 = bv[d].count_prefix(R, 0);
int l1 = L + mid[d] - l0, r1 = R + mid[d] - r0;
dfs(dfs, d, l1, r1, c, b), dfs(dfs, d, l0, r0, a, c);
};
dfs(dfs, log, L, R, 0, 1 << log);
return (p == -1 ? -infty<Y> : ItoY[p]);
}
Y median(bool UPPER, int L, int R) {
assert(0 <= L && L < R && R <= n);
int k = (UPPER ? (R - L) / 2 : (R - L - 1) / 2);
return kth(L, R, k);
}
pair<Y, T> kth_value_and_prod(int L, int R, int k) {
assert(0 <= k && k <= R - L);
if (k == R - L) return {infty<Y>, seg[log].prod(L, R)};
int p = 0;
T t = Mono::unit();
for (int d = log - 1; d >= 0; --d) {
int l0 = bv[d].count_prefix(L, 0), r0 = bv[d].count_prefix(R, 0);
int l1 = L + mid[d] - l0, r1 = R + mid[d] - r0;
if (k < r0 - l0) {
L = l0, R = r0;
} else {
t = Mono::op(t, seg[d].prod(l0, r0)), k -= r0 - l0, L = l1, R = r1, p |= 1 << d;
}
}
t = Mono::op(t, seg[0].prod(L, L + k));
return {ItoY[p], t};
}
T prod_index_range(int L, int R, int k1, int k2) {
static_assert(has_inverse<Mono>::value);
T t1 = kth_value_and_prod(L, R, k1).se;
T t2 = kth_value_and_prod(L, R, k2).se;
return Mono::op(Mono::inverse(t1), t2);
}
// [L,R) x [0,y) での check(y, cnt, prod) が true となる最大の (cnt,prod)
// ただし y はぴったりのところだけです
template <typename F>
tuple<Y, int, T> max_right(F check, int L, int R) {
int cnt = 0;
int p = 0;
T t = Mono::unit();
assert(check(-infty<Y>, 0, Mono::unit()));
if (check(infty<Y>, R - L, seg[log].prod(L, R))) { return {R - L, infty<Y>, seg[log].prod(L, R)}; }
for (int d = log - 1; d >= 0; --d) {
int l0 = bv[d].count_prefix(L, 0), r0 = bv[d].count_prefix(R, 0);
int l1 = L + mid[d] - l0, r1 = R + mid[d] - r0;
int cnt1 = cnt + r0 - l0;
int p1 = p | 1 << d;
T t1 = Mono::op(t, seg[d].prod(l0, r0));
int y1 = (p1 < len(ItoY) ? ItoY[p1] : infty<Y>);
if (check(y1, cnt1, t1)) {
p = p1, cnt = cnt1, t = t1, L = l1, R = r1;
} else {
L = l0, R = r0;
}
}
int y = (p < len(ItoY) ? ItoY[p] : infty<Y>);
return {y, cnt, t};
}
void set(int i, T t) {
assert(0 <= i && i < n);
int L = i, R = i + 1;
seg[log].set(L, t);
for (int d = log - 1; d >= 0; --d) {
int l0 = bv[d].count_prefix(L, 0), r0 = bv[d].count_prefix(R, 0);
int l1 = L + mid[d] - l0, r1 = R + mid[d] - r0;
if (l0 < r0) L = l0, R = r0;
if (l0 == r0) L = l1, R = r1;
seg[d].set(L, t);
}
}
void multiply(int i, T t) {
assert(0 <= i && i < n);
int L = i, R = i + 1;
seg[log].multiply(L, t);
for (int d = log - 1; d >= 0; --d) {
int l0 = bv[d].count_prefix(L, 0), r0 = bv[d].count_prefix(R, 0);
int l1 = L + mid[d] - l0, r1 = R + mid[d] - r0;
if (l0 < r0) L = l0, R = r0;
if (l0 == r0) L = l1, R = r1;
seg[d].multiply(L, t);
}
}
void add(int i, T t) { multiply(i, t); }
};
#line 2 "graph/tree.hpp"
#line 2 "ds/hashmap.hpp"
// u64 -> Val
template <typename Val>
struct HashMap {
// n は入れたいものの個数で ok
HashMap(u32 n = 0) { build(n); }
void build(u32 n) {
u32 k = 8;
while (k < n * 2) k *= 2;
cap = k / 2, mask = k - 1;
key.resize(k), val.resize(k), used.assign(k, 0);
}
// size を保ったまま. size=0 にするときは build すること.
void clear() {
used.assign(len(used), 0);
cap = (mask + 1) / 2;
}
int size() { return len(used) / 2 - cap; }
int index(const u64& k) {
int i = 0;
for (i = hash(k); used[i] && key[i] != k; i = (i + 1) & mask) {}
return i;
}
Val& operator[](const u64& k) {
if (cap == 0) extend();
int i = index(k);
if (!used[i]) { used[i] = 1, key[i] = k, val[i] = Val{}, --cap; }
return val[i];
}
Val get(const u64& k, Val default_value) {
int i = index(k);
return (used[i] ? val[i] : default_value);
}
bool count(const u64& k) {
int i = index(k);
return used[i] && key[i] == k;
}
// f(key, val)
template <typename F>
void enumerate_all(F f) {
FOR(i, len(used)) if (used[i]) f(key[i], val[i]);
}
private:
u32 cap, mask;
vc<u64> key;
vc<Val> val;
vc<bool> used;
u64 hash(u64 x) {
static const u64 FIXED_RANDOM = std::chrono::steady_clock::now().time_since_epoch().count();
x += FIXED_RANDOM;
x = (x ^ (x >> 30)) * 0xbf58476d1ce4e5b9;
x = (x ^ (x >> 27)) * 0x94d049bb133111eb;
return (x ^ (x >> 31)) & mask;
}
void extend() {
vc<pair<u64, Val>> dat;
dat.reserve(len(used) / 2 - cap);
FOR(i, len(used)) {
if (used[i]) dat.eb(key[i], val[i]);
}
build(2 * len(dat));
for (auto& [a, b]: dat) (*this)[a] = b;
}
};
#line 3 "graph/base.hpp"
template <typename T>
struct Edge {
int frm, to;
T cost;
int id;
};
template <typename T = int, bool directed = false>
struct Graph {
static constexpr bool is_directed = directed;
int N, M;
using cost_type = T;
using edge_type = Edge<T>;
vector<edge_type> edges;
vector<int> indptr;
vector<edge_type> csr_edges;
vc<int> vc_deg, vc_indeg, vc_outdeg;
bool prepared;
class OutgoingEdges {
public:
OutgoingEdges(const Graph* G, int l, int r) : G(G), l(l), r(r) {}
const edge_type* begin() const {
if (l == r) { return 0; }
return &G->csr_edges[l];
}
const edge_type* end() const {
if (l == r) { return 0; }
return &G->csr_edges[r];
}
private:
const Graph* G;
int l, r;
};
bool is_prepared() { return prepared; }
Graph() : N(0), M(0), prepared(0) {}
Graph(int N) : N(N), M(0), prepared(0) {}
void build(int n) {
N = n, M = 0;
prepared = 0;
edges.clear();
indptr.clear();
csr_edges.clear();
vc_deg.clear();
vc_indeg.clear();
vc_outdeg.clear();
}
void add(int frm, int to, T cost = 1, int i = -1) {
assert(!prepared);
assert(0 <= frm && 0 <= to && to < N);
if (i == -1) i = M;
auto e = edge_type({frm, to, cost, i});
edges.eb(e);
++M;
}
#ifdef FASTIO
// wt, off
void read_tree(bool wt = false, int off = 1) { read_graph(N - 1, wt, off); }
void read_graph(int M, bool wt = false, int off = 1) {
for (int m = 0; m < M; ++m) {
INT(a, b);
a -= off, b -= off;
if (!wt) {
add(a, b);
} else {
T c;
read(c);
add(a, b, c);
}
}
build();
}
#endif
void build() {
assert(!prepared);
prepared = true;
indptr.assign(N + 1, 0);
for (auto&& e: edges) {
indptr[e.frm + 1]++;
if (!directed) indptr[e.to + 1]++;
}
for (int v = 0; v < N; ++v) { indptr[v + 1] += indptr[v]; }
auto counter = indptr;
csr_edges.resize(indptr.back() + 1);
for (auto&& e: edges) {
csr_edges[counter[e.frm]++] = e;
if (!directed) csr_edges[counter[e.to]++] = edge_type({e.to, e.frm, e.cost, e.id});
}
}
OutgoingEdges operator[](int v) const {
assert(prepared);
return {this, indptr[v], indptr[v + 1]};
}
vc<int> deg_array() {
if (vc_deg.empty()) calc_deg();
return vc_deg;
}
pair<vc<int>, vc<int>> deg_array_inout() {
if (vc_indeg.empty()) calc_deg_inout();
return {vc_indeg, vc_outdeg};
}
int deg(int v) {
if (vc_deg.empty()) calc_deg();
return vc_deg[v];
}
int in_deg(int v) {
if (vc_indeg.empty()) calc_deg_inout();
return vc_indeg[v];
}
int out_deg(int v) {
if (vc_outdeg.empty()) calc_deg_inout();
return vc_outdeg[v];
}
#ifdef FASTIO
void debug() {
#ifdef LOCAL
print("Graph");
if (!prepared) {
print("frm to cost id");
for (auto&& e: edges) print(e.frm, e.to, e.cost, e.id);
} else {
print("indptr", indptr);
print("frm to cost id");
FOR(v, N) for (auto&& e: (*this)[v]) print(e.frm, e.to, e.cost, e.id);
}
#endif
}
#endif
vc<int> new_idx;
vc<bool> used_e;
// G における頂点 V[i] が、新しいグラフで i になるようにする
// {G, es}
// sum(deg(v)) の計算量になっていて、
// 新しいグラフの n+m より大きい可能性があるので注意
Graph<T, directed> rearrange(vc<int> V, bool keep_eid = 0) {
if (len(new_idx) != N) new_idx.assign(N, -1);
int n = len(V);
FOR(i, n) new_idx[V[i]] = i;
Graph<T, directed> G(n);
vc<int> history;
FOR(i, n) {
for (auto&& e: (*this)[V[i]]) {
if (len(used_e) <= e.id) used_e.resize(e.id + 1);
if (used_e[e.id]) continue;
int a = e.frm, b = e.to;
if (new_idx[a] != -1 && new_idx[b] != -1) {
history.eb(e.id);
used_e[e.id] = 1;
int eid = (keep_eid ? e.id : -1);
G.add(new_idx[a], new_idx[b], e.cost, eid);
}
}
}
FOR(i, n) new_idx[V[i]] = -1;
for (auto&& eid: history) used_e[eid] = 0;
G.build();
return G;
}
Graph<T, true> to_directed_tree(int root = -1) {
if (root == -1) root = 0;
assert(!is_directed && prepared && M == N - 1);
Graph<T, true> G1(N);
vc<int> par(N, -1);
auto dfs = [&](auto& dfs, int v) -> void {
for (auto& e: (*this)[v]) {
if (e.to == par[v]) continue;
par[e.to] = v, dfs(dfs, e.to);
}
};
dfs(dfs, root);
for (auto& e: edges) {
int a = e.frm, b = e.to;
if (par[a] == b) swap(a, b);
assert(par[b] == a);
G1.add(a, b, e.cost);
}
G1.build();
return G1;
}
HashMap<int> MP_FOR_EID;
int get_eid(u64 a, u64 b) {
if (len(MP_FOR_EID) == 0) {
MP_FOR_EID.build(N - 1);
for (auto& e: edges) {
u64 a = e.frm, b = e.to;
u64 k = to_eid_key(a, b);
MP_FOR_EID[k] = e.id;
}
}
return MP_FOR_EID.get(to_eid_key(a, b), -1);
}
u64 to_eid_key(u64 a, u64 b) {
if (!directed && a > b) swap(a, b);
return N * a + b;
}
private:
void calc_deg() {
assert(vc_deg.empty());
vc_deg.resize(N);
for (auto&& e: edges) vc_deg[e.frm]++, vc_deg[e.to]++;
}
void calc_deg_inout() {
assert(vc_indeg.empty());
vc_indeg.resize(N);
vc_outdeg.resize(N);
for (auto&& e: edges) { vc_indeg[e.to]++, vc_outdeg[e.frm]++; }
}
};
#line 4 "graph/tree.hpp"
// HLD euler tour をとっていろいろ。
template <typename GT>
struct Tree {
using Graph_type = GT;
GT &G;
using WT = typename GT::cost_type;
int N;
vector<int> LID, RID, head, V, parent, VtoE;
vc<int> depth;
vc<WT> depth_weighted;
Tree(GT &G, int r = 0, bool hld = 1) : G(G) { build(r, hld); }
void build(int r = 0, bool hld = 1) {
if (r == -1) return; // build を遅延したいとき
N = G.N;
LID.assign(N, -1), RID.assign(N, -1), head.assign(N, r);
V.assign(N, -1), parent.assign(N, -1), VtoE.assign(N, -1);
depth.assign(N, -1), depth_weighted.assign(N, 0);
assert(G.is_prepared());
int t1 = 0;
dfs_sz(r, -1, hld);
dfs_hld(r, t1);
}
void dfs_sz(int v, int p, bool hld) {
auto &sz = RID;
parent[v] = p;
depth[v] = (p == -1 ? 0 : depth[p] + 1);
sz[v] = 1;
int l = G.indptr[v], r = G.indptr[v + 1];
auto &csr = G.csr_edges;
// 使う辺があれば先頭にする
for (int i = r - 2; i >= l; --i) {
if (hld && depth[csr[i + 1].to] == -1) swap(csr[i], csr[i + 1]);
}
int hld_sz = 0;
for (int i = l; i < r; ++i) {
auto e = csr[i];
if (depth[e.to] != -1) continue;
depth_weighted[e.to] = depth_weighted[v] + e.cost;
VtoE[e.to] = e.id;
dfs_sz(e.to, v, hld);
sz[v] += sz[e.to];
if (hld && chmax(hld_sz, sz[e.to]) && l < i) { swap(csr[l], csr[i]); }
}
}
void dfs_hld(int v, int ×) {
LID[v] = times++;
RID[v] += LID[v];
V[LID[v]] = v;
bool heavy = true;
for (auto &&e: G[v]) {
if (depth[e.to] <= depth[v]) continue;
head[e.to] = (heavy ? head[v] : e.to);
heavy = false;
dfs_hld(e.to, times);
}
}
vc<int> heavy_path_at(int v) {
vc<int> P = {v};
while (1) {
int a = P.back();
for (auto &&e: G[a]) {
if (e.to != parent[a] && head[e.to] == v) {
P.eb(e.to);
break;
}
}
if (P.back() == a) break;
}
return P;
}
int heavy_child(int v) {
int k = LID[v] + 1;
if (k == N) return -1;
int w = V[k];
return (parent[w] == v ? w : -1);
}
vc<int> memo_tail;
int tail(int v) {
if (memo_tail.empty()) {
memo_tail.assign(N, -1);
FOR_R(i, N) {
int v = V[i];
int w = heavy_child(v);
memo_tail[v] = (w == -1 ? v : memo_tail[w]);
}
}
return memo_tail[v];
}
int e_to_v(int eid) {
auto e = G.edges[eid];
return (parent[e.frm] == e.to ? e.frm : e.to);
}
int v_to_e(int v) { return VtoE[v]; }
int get_eid(int u, int v) {
if (parent[u] != v) swap(u, v);
assert(parent[u] == v);
return VtoE[u];
}
int ELID(int v) { return 2 * LID[v] - depth[v]; }
int ERID(int v) { return 2 * RID[v] - depth[v] - 1; }
// 目標地点へ進む個数が k
int LA(int v, int k) {
assert(k <= depth[v]);
while (1) {
int u = head[v];
if (LID[v] - k >= LID[u]) return V[LID[v] - k];
k -= LID[v] - LID[u] + 1;
v = parent[u];
}
}
int la(int u, int v) { return LA(u, v); }
int LCA(int u, int v) {
for (;; v = parent[head[v]]) {
if (LID[u] > LID[v]) swap(u, v);
if (head[u] == head[v]) return u;
}
}
int meet(int a, int b, int c) { return LCA(a, b) ^ LCA(a, c) ^ LCA(b, c); }
int lca(int u, int v) { return LCA(u, v); }
int subtree_size(int v, int root = -1) {
if (root == -1) return RID[v] - LID[v];
if (v == root) return N;
int x = jump(v, root, 1);
if (in_subtree(v, x)) return RID[v] - LID[v];
return N - RID[x] + LID[x];
}
int dist(int a, int b) {
int c = LCA(a, b);
return depth[a] + depth[b] - 2 * depth[c];
}
WT dist_weighted(int a, int b) {
int c = LCA(a, b);
return depth_weighted[a] + depth_weighted[b] - WT(2) * depth_weighted[c];
}
// a is in b
bool in_subtree(int a, int b) { return LID[b] <= LID[a] && LID[a] < RID[b]; }
int jump(int a, int b, ll k) {
if (k == 1) {
if (a == b) return -1;
return (in_subtree(b, a) ? LA(b, depth[b] - depth[a] - 1) : parent[a]);
}
int c = LCA(a, b);
int d_ac = depth[a] - depth[c];
int d_bc = depth[b] - depth[c];
if (k > d_ac + d_bc) return -1;
if (k <= d_ac) return LA(a, k);
return LA(b, d_ac + d_bc - k);
}
vc<int> collect_child(int v) {
vc<int> res;
for (auto &&e: G[v])
if (e.to != parent[v]) res.eb(e.to);
return res;
}
vc<int> collect_subtree(int v) { return {V.begin() + LID[v], V.begin() + RID[v]}; }
vc<int> collect_light(int v) {
vc<int> res;
bool skip = true;
for (auto &&e: G[v])
if (e.to != parent[v]) {
if (!skip) res.eb(e.to);
skip = false;
}
return res;
}
vc<pair<int, int>> get_path_decomposition(int u, int v, bool edge) {
// [始点, 終点] の"閉"区間列。
vc<pair<int, int>> up, down;
while (1) {
if (head[u] == head[v]) break;
if (LID[u] < LID[v]) {
down.eb(LID[head[v]], LID[v]);
v = parent[head[v]];
} else {
up.eb(LID[u], LID[head[u]]);
u = parent[head[u]];
}
}
if (LID[u] < LID[v]) down.eb(LID[u] + edge, LID[v]);
elif (LID[v] + edge <= LID[u]) up.eb(LID[u], LID[v] + edge);
reverse(all(down));
up.insert(up.end(), all(down));
return up;
}
// 辺の列の情報 (frm,to,str)
// str = "heavy_up", "heavy_down", "light_up", "light_down"
vc<tuple<int, int, string>> get_path_decomposition_detail(int u, int v) {
vc<tuple<int, int, string>> up, down;
while (1) {
if (head[u] == head[v]) break;
if (LID[u] < LID[v]) {
if (v != head[v]) down.eb(head[v], v, "heavy_down"), v = head[v];
down.eb(parent[v], v, "light_down"), v = parent[v];
} else {
if (u != head[u]) up.eb(u, head[u], "heavy_up"), u = head[u];
up.eb(u, parent[u], "light_up"), u = parent[u];
}
}
if (LID[u] < LID[v]) down.eb(u, v, "heavy_down");
elif (LID[v] < LID[u]) up.eb(u, v, "heavy_up");
reverse(all(down));
concat(up, down);
return up;
}
vc<int> restore_path(int u, int v) {
vc<int> P;
for (auto &&[a, b]: get_path_decomposition(u, v, 0)) {
if (a <= b) {
FOR(i, a, b + 1) P.eb(V[i]);
} else {
FOR_R(i, b, a + 1) P.eb(V[i]);
}
}
return P;
}
// path [a,b] と [c,d] の交わり. 空ならば {-1,-1}.
// https://codeforces.com/problemset/problem/500/G
pair<int, int> path_intersection(int a, int b, int c, int d) {
int ab = lca(a, b), ac = lca(a, c), ad = lca(a, d);
int bc = lca(b, c), bd = lca(b, d), cd = lca(c, d);
int x = ab ^ ac ^ bc, y = ab ^ ad ^ bd; // meet(a,b,c), meet(a,b,d)
if (x != y) return {x, y};
int z = ac ^ ad ^ cd;
if (x != z) x = -1;
return {x, x};
}
// uv path 上で check(v) を満たす最後の v
// なければ (つまり check(v) が ng )-1
template <class F>
int max_path(F check, int u, int v) {
if (!check(u)) return -1;
auto pd = get_path_decomposition(u, v, false);
for (auto [a, b]: pd) {
if (!check(V[a])) return u;
if (check(V[b])) {
u = V[b];
continue;
}
int c = binary_search([&](int c) -> bool { return check(V[c]); }, a, b, 0);
return V[c];
}
return u;
}
};
#line 4 "graph/ds/tree_wavelet_matrix.hpp"
// https://atcoder.jp/contests/pakencamp-2022-day1/tasks/pakencamp_2022_day1_j
// https://atcoder.jp/contests/utpc2011/tasks/utpc2011_12
template <typename TREE, bool edge, typename T, bool COMPRESS,
typename Monoid = Monoid_Add<T>>
struct Tree_Wavelet_Matrix {
TREE& tree;
int N;
using WM = Wavelet_Matrix<T, COMPRESS, Monoid_Add<T>>;
using X = typename Monoid::value_type;
WM wm;
Tree_Wavelet_Matrix(TREE& tree, vc<T> A, vc<X> SUM_data = {}, int log = -1)
: tree(tree), N(tree.N) {
vc<X>& S = SUM_data;
vc<T> A1;
vc<X> S1;
A1.resize(N);
if (!S.empty()) S1.resize(N);
if (!edge) {
assert(len(A) == N && (len(S) == 0 || len(S) == N));
FOR(v, N) A1[tree.LID[v]] = A[v];
if (len(S) == N) { FOR(v, N) S1[tree.LID[v]] = S[v]; }
wm.build(A1, S1, log);
} else {
assert(len(A) == N - 1 && (len(S) == 0 || len(S) == N - 1));
if (!S.empty()) {
FOR(e, N - 1) { S1[tree.LID[tree.e_to_v(e)]] = S[e]; }
}
FOR(e, N - 1) { A1[tree.LID[tree.e_to_v(e)]] = A[e]; }
wm.build(A1, S1, log);
}
}
// xor した結果で [a, b) に収まるものを数える
int count_path(int s, int t, T a, T b, T xor_val = 0) {
return wm.count(get_segments(s, t), a, b, xor_val);
}
// xor した結果で [a, b) に収まるものを数える
int count_subtree(int u, T a, T b, T xor_val = 0) {
int l = tree.LID[u], r = tree.RID[u];
return wm.count(l + edge, r, a, b, xor_val);
}
// xor した結果で、[L, R) の中で k>=0 番目と prefix sum
pair<T, X> kth_value_and_sum_path(int s, int t, int k, T xor_val = 0) {
return wm.kth_value_and_sum(get_segments(s, t), k, xor_val);
}
// xor した結果で、[L, R) の中で k>=0 番目と prefix sum
pair<T, X> kth_value_and_sum_subtree(int u, int k, T xor_val = 0) {
int l = tree.LID[u], r = tree.RID[u];
return wm.kth_value_and_sum(l + edge, r, k, xor_val);
}
// xor した結果で、[L, R) の中で k>=0 番目
T kth_path(int s, int t, int k, T xor_val = 0) {
return wm.kth(get_segments(s, t), k, xor_val);
}
// xor した結果で、[L, R) の中で k>=0 番目
T kth_subtree(int u, int k, T xor_val = 0) {
int l = tree.LID[u], r = tree.RID[u];
return wm.kth(l + edge, r, k, xor_val);
}
// xor した結果で、[L, R) の中で中央値。
// LOWER = true:下側中央値、false:上側中央値
T median_path(bool UPPER, int s, int t, T xor_val = 0) {
return wm.median(UPPER, get_segments(s, t), xor_val);
}
T median_subtree(bool UPPER, int u, T xor_val = 0) {
int l = tree.LID[u], r = tree.RID[u];
return wm.median(UPPER, l + edge, r, xor_val);
}
// xor した結果で [k1, k2) 番目であるところの SUM_data の和
X sum_path(int s, int t, int k1, int k2, T xor_val = 0) {
return wm.sum(get_segments(s, t), k1, k2, xor_val);
}
// xor した結果で [k1, k2) 番目であるところの SUM_data の和
X sum_subtree(int u, int k1, int k2, T xor_val = 0) {
int l = tree.LID[u], r = tree.RID[u];
return wm.sum(l + edge, r, k1, k2, xor_val);
}
X sum_all_path(int s, int t) { return wm.sum_all(get_segments(s, t)); }
X sum_all_subtree(int u) {
int l = tree.LID[u], r = tree.RID[u];
return wm.sum_all(l + edge, r);
}
private:
vc<pair<int, int>> get_segments(int s, int t) {
vc<pair<int, int>> segments = tree.get_path_decomposition(s, t, edge);
for (auto&& [a, b]: segments) {
if (a >= b) swap(a, b);
++b;
}
return segments;
}
};