This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub maspypy/library
#include "graph/ds/tree_wavelet_matrix.hpp"
#include "ds/wavelet_matrix/wavelet_matrix.hpp" #include "graph/tree.hpp" // https://atcoder.jp/contests/pakencamp-2022-day1/tasks/pakencamp_2022_day1_j // https://atcoder.jp/contests/utpc2011/tasks/utpc2011_12 template <typename TREE, bool edge, typename T, bool COMPRESS, typename Monoid = Monoid_Add<T>> struct Tree_Wavelet_Matrix { TREE& tree; int N; using WM = Wavelet_Matrix<T, COMPRESS, Monoid_Add<T>>; using X = typename Monoid::value_type; WM wm; Tree_Wavelet_Matrix(TREE& tree, vc<T> A, vc<X> SUM_data = {}, int log = -1) : tree(tree), N(tree.N) { vc<X>& S = SUM_data; vc<T> A1; vc<X> S1; A1.resize(N); if (!S.empty()) S1.resize(N); if (!edge) { assert(len(A) == N && (len(S) == 0 || len(S) == N)); FOR(v, N) A1[tree.LID[v]] = A[v]; if (len(S) == N) { FOR(v, N) S1[tree.LID[v]] = S[v]; } wm.build(A1, S1, log); } else { assert(len(A) == N - 1 && (len(S) == 0 || len(S) == N - 1)); if (!S.empty()) { FOR(e, N - 1) { S1[tree.LID[tree.e_to_v(e)]] = S[e]; } } FOR(e, N - 1) { A1[tree.LID[tree.e_to_v(e)]] = A[e]; } wm.build(A1, S1, log); } } // xor した結果で [a, b) に収まるものを数える int count_path(int s, int t, T a, T b, T xor_val = 0) { return wm.count(get_segments(s, t), a, b, xor_val); } // xor した結果で [a, b) に収まるものを数える int count_subtree(int u, T a, T b, T xor_val = 0) { int l = tree.LID[u], r = tree.RID[u]; return wm.count(l + edge, r, a, b, xor_val); } // xor した結果で、[L, R) の中で k>=0 番目と prefix sum pair<T, X> kth_value_and_sum_path(int s, int t, int k, T xor_val = 0) { return wm.kth_value_and_sum(get_segments(s, t), k, xor_val); } // xor した結果で、[L, R) の中で k>=0 番目と prefix sum pair<T, X> kth_value_and_sum_subtree(int u, int k, T xor_val = 0) { int l = tree.LID[u], r = tree.RID[u]; return wm.kth_value_and_sum(l + edge, r, k, xor_val); } // xor した結果で、[L, R) の中で k>=0 番目 T kth_path(int s, int t, int k, T xor_val = 0) { return wm.kth(get_segments(s, t), k, xor_val); } // xor した結果で、[L, R) の中で k>=0 番目 T kth_subtree(int u, int k, T xor_val = 0) { int l = tree.LID[u], r = tree.RID[u]; return wm.kth(l + edge, r, k, xor_val); } // xor した結果で、[L, R) の中で中央値。 // LOWER = true:下側中央値、false:上側中央値 T median_path(bool UPPER, int s, int t, T xor_val = 0) { return wm.median(UPPER, get_segments(s, t), xor_val); } T median_subtree(bool UPPER, int u, T xor_val = 0) { int l = tree.LID[u], r = tree.RID[u]; return wm.median(UPPER, l + edge, r, xor_val); } // xor した結果で [k1, k2) 番目であるところの SUM_data の和 X sum_path(int s, int t, int k1, int k2, T xor_val = 0) { return wm.sum(get_segments(s, t), k1, k2, xor_val); } // xor した結果で [k1, k2) 番目であるところの SUM_data の和 X sum_subtree(int u, int k1, int k2, T xor_val = 0) { int l = tree.LID[u], r = tree.RID[u]; return wm.sum(l + edge, r, k1, k2, xor_val); } X sum_all_path(int s, int t) { return wm.sum_all(get_segments(s, t)); } X sum_all_subtree(int u) { int l = tree.LID[u], r = tree.RID[u]; return wm.sum_all(l + edge, r); } private: vc<pair<int, int>> get_segments(int s, int t) { vc<pair<int, int>> segments = tree.get_path_decomposition(s, t, edge); for (auto&& [a, b]: segments) { if (a >= b) swap(a, b); ++b; } return segments; } };
#line 1 "graph/ds/tree_wavelet_matrix.hpp" #line 1 "ds/bit_vector.hpp" struct Bit_Vector { int n; bool prepared = 0; vc<pair<u64, u32>> dat; Bit_Vector(int n = 0) : n(n) { dat.assign((n + 127) >> 6, {0, 0}); } void set(int i) { assert(!prepared && (0 <= i && i < n)); dat[i >> 6].fi |= u64(1) << (i & 63); } void reset() { fill(all(dat), pair<u64, u32>{0, 0}); prepared = 0; } void build() { prepared = 1; FOR(i, len(dat) - 1) dat[i + 1].se = dat[i].se + popcnt(dat[i].fi); } // [0, k) 内の 1 の個数 bool operator[](int i) { return dat[i >> 6].fi >> (i & 63) & 1; } int count_prefix(int k, bool f = true) { assert(prepared); auto [a, b] = dat[k >> 6]; int ret = b + popcnt(a & ((u64(1) << (k & 63)) - 1)); return (f ? ret : k - ret); } int count(int L, int R, bool f = true) { return count_prefix(R, f) - count_prefix(L, f); } string to_string() { string ans; FOR(i, n) ans += '0' + (dat[i / 64].fi >> (i % 64) & 1); return ans; } }; #line 1 "ds/index_compression.hpp" template <typename T> struct Index_Compression_DISTINCT_SMALL { static_assert(is_same_v<T, int>); int mi, ma; vc<int> dat; vc<int> build(vc<int> X) { mi = 0, ma = -1; if (!X.empty()) mi = MIN(X), ma = MAX(X); dat.assign(ma - mi + 2, 0); for (auto& x: X) dat[x - mi + 1]++; FOR(i, len(dat) - 1) dat[i + 1] += dat[i]; for (auto& x: X) { x = dat[x - mi]++; } FOR_R(i, 1, len(dat)) dat[i] = dat[i - 1]; dat[0] = 0; return X; } int operator()(ll x) { return dat[clamp<ll>(x - mi, 0, ma - mi + 1)]; } }; template <typename T> struct Index_Compression_SAME_SMALL { static_assert(is_same_v<T, int>); int mi, ma; vc<int> dat; vc<int> build(vc<int> X) { mi = 0, ma = -1; if (!X.empty()) mi = MIN(X), ma = MAX(X); dat.assign(ma - mi + 2, 0); for (auto& x: X) dat[x - mi + 1] = 1; FOR(i, len(dat) - 1) dat[i + 1] += dat[i]; for (auto& x: X) { x = dat[x - mi]; } return X; } int operator()(ll x) { return dat[clamp<ll>(x - mi, 0, ma - mi + 1)]; } }; template <typename T> struct Index_Compression_SAME_LARGE { vc<T> dat; vc<int> build(vc<T> X) { vc<int> I = argsort(X); vc<int> res(len(X)); for (auto& i: I) { if (!dat.empty() && dat.back() == X[i]) { res[i] = len(dat) - 1; } else { res[i] = len(dat); dat.eb(X[i]); } } dat.shrink_to_fit(); return res; } int operator()(T x) { return LB(dat, x); } }; template <typename T> struct Index_Compression_DISTINCT_LARGE { vc<T> dat; vc<int> build(vc<T> X) { vc<int> I = argsort(X); vc<int> res(len(X)); for (auto& i: I) { res[i] = len(dat), dat.eb(X[i]); } dat.shrink_to_fit(); return res; } int operator()(T x) { return LB(dat, x); } }; template <typename T, bool SMALL> using Index_Compression_DISTINCT = typename std::conditional<SMALL, Index_Compression_DISTINCT_SMALL<T>, Index_Compression_DISTINCT_LARGE<T>>::type; template <typename T, bool SMALL> using Index_Compression_SAME = typename std::conditional<SMALL, Index_Compression_SAME_SMALL<T>, Index_Compression_SAME_LARGE<T>>::type; // SAME: [2,3,2] -> [0,1,0] // DISTINCT: [2,2,3] -> [0,2,1] // (x): lower_bound(X,x) をかえす template <typename T, bool SAME, bool SMALL> using Index_Compression = typename std::conditional<SAME, Index_Compression_SAME<T, SMALL>, Index_Compression_DISTINCT<T, SMALL>>::type; #line 2 "alg/monoid/add.hpp" template <typename E> struct Monoid_Add { using X = E; using value_type = X; static constexpr X op(const X &x, const X &y) noexcept { return x + y; } static constexpr X inverse(const X &x) noexcept { return -x; } static constexpr X power(const X &x, ll n) noexcept { return X(n) * x; } static constexpr X unit() { return X(0); } static constexpr bool commute = true; }; #line 4 "ds/wavelet_matrix/wavelet_matrix.hpp" // 静的メソッドinverseの存在をチェックするテンプレート template <typename, typename = std::void_t<>> struct has_inverse : std::false_type {}; template <typename T> struct has_inverse<T, std::void_t<decltype(T::inverse(std::declval<typename T::value_type>()))>> : std::true_type {}; struct Dummy_Data_Structure { using MX = Monoid_Add<bool>; void build(const vc<bool>& A) {} }; template <typename Y, bool SMALL_Y, typename SEGTREE = Dummy_Data_Structure> struct Wavelet_Matrix { using Mono = typename SEGTREE::MX; using T = typename Mono::value_type; static_assert(Mono::commute); int n, log, K; Index_Compression<Y, true, SMALL_Y> IDX; vc<Y> ItoY; vc<int> mid; vc<Bit_Vector> bv; vc<SEGTREE> seg; Wavelet_Matrix() {} Wavelet_Matrix(const vc<Y>& A) { build(A); } Wavelet_Matrix(const vc<Y>& A, vc<T>& SUM_Data) { build(A, SUM_Data); } template <typename F> Wavelet_Matrix(int n, F f) { build(n, f); } template <typename F> void build(int m, F f) { vc<Y> A(m); vc<T> S(m); for (int i = 0; i < m; ++i) { auto p = f(i); A[i] = p.fi, S[i] = p.se; } build(A, S); } void build(const vc<Y>& A) { build(A, vc<T>(len(A), Mono::unit())); } void build(const vc<Y>& A, vc<T> S) { n = len(A); vc<int> B = IDX.build(A); K = 0; for (auto& x: B) chmax(K, x + 1); ItoY.resize(K); FOR(i, n) ItoY[B[i]] = A[i]; log = 0; while ((1 << log) < K) ++log; mid.resize(log), bv.assign(log, Bit_Vector(n)); vc<int> B0(n), B1(n); vc<T> S0(n), S1(n); seg.resize(log + 1); seg[log].build(S); for (int d = log - 1; d >= 0; --d) { int p0 = 0, p1 = 0; for (int i = 0; i < n; ++i) { bool f = (B[i] >> d & 1); if (!f) { B0[p0] = B[i], S0[p0] = S[i], p0++; } if (f) { bv[d].set(i), B1[p1] = B[i], S1[p1] = S[i], p1++; } } swap(B, B0), swap(S, S0); move(B1.begin(), B1.begin() + p1, B.begin() + p0); move(S1.begin(), S1.begin() + p1, S.begin() + p0); mid[d] = p0, bv[d].build(), seg[d].build(S); } } // [L,R) x [0,y) int prefix_count(int L, int R, Y y) { int p = IDX(y); if (L == R || p == 0) return 0; if (p == K) return R - L; int cnt = 0; for (int d = log - 1; d >= 0; --d) { int l0 = bv[d].count_prefix(L, 0), r0 = bv[d].count_prefix(R, 0); int l1 = L + mid[d] - l0, r1 = R + mid[d] - r0; if (p >> d & 1) cnt += r0 - l0, L = l1, R = r1; if (!(p >> d & 1)) L = l0, R = r0; } return cnt; } // [L,R) x [y1,y2) int count(int L, int R, Y y1, Y y2) { return prefix_count(L, R, y2) - prefix_count(L, R, y1); } // [L,R) x [0,y) pair<int, T> prefix_count_and_prod(int L, int R, Y y) { int p = IDX(y); if (p == 0) return {0, Mono::unit()}; if (p == K) return {R - L, seg[log].prod(L, R)}; int cnt = 0; T t = Mono::unit(); for (int d = log - 1; d >= 0; --d) { int l0 = bv[d].count_prefix(L, 0), r0 = bv[d].count_prefix(R, 0); int l1 = L + mid[d] - l0, r1 = R + mid[d] - r0; if (p >> d & 1) { cnt += r0 - l0, t = Mono::op(t, seg[d].prod(l0, r0)), L = l1, R = r1; } if (!(p >> d & 1)) L = l0, R = r0; } return {cnt, t}; } // [L,R) x [y1,y2) pair<int, T> count_and_prod(int L, int R, Y y1, Y y2) { if constexpr (has_inverse<Mono>::value) { auto [c1, t1] = prefix_count_and_prod(L, R, y1); auto [c2, t2] = prefix_count_and_prod(L, R, y2); return {c2 - c1, Mono::op(Mono::inverse(t1), t2)}; } int lo = IDX(y1), hi = IDX(y2), cnt = 0; T t = Mono::unit(); auto dfs = [&](auto& dfs, int d, int L, int R, int a, int b) -> void { assert(b - a == (1 << d)); if (hi <= a || b <= lo) return; if (lo <= a && b <= hi) { cnt += R - L, t = Mono::op(t, seg[d].prod(L, R)); return; } --d; int c = (a + b) / 2; int l0 = bv[d].count_prefix(L, 0), r0 = bv[d].count_prefix(R, 0); int l1 = L + mid[d] - l0, r1 = R + mid[d] - r0; dfs(dfs, d, l0, r0, a, c), dfs(dfs, d, l1, r1, c, b); }; dfs(dfs, log, L, R, 0, 1 << log); return {cnt, t}; } // [L,R) x [y1,y2) T prefix_prod(int L, int R, Y y) { return prefix_count_and_prod(L, R, y).se; } // [L,R) x [y1,y2) T prod(int L, int R, Y y1, Y y2) { return count_and_prod(L, R, y1, y2).se; } T prod_all(int L, int R) { return seg[log].prod(L, R); } Y kth(int L, int R, int k) { assert(0 <= k && k < R - L); int p = 0; for (int d = log - 1; d >= 0; --d) { int l0 = bv[d].count_prefix(L, 0), r0 = bv[d].count_prefix(R, 0); int l1 = L + mid[d] - l0, r1 = R + mid[d] - r0; if (k < r0 - l0) { L = l0, R = r0; } else { k -= r0 - l0, L = l1, R = r1, p |= 1 << d; } } return ItoY[p]; } // y 以上最小 OR infty<Y> Y next(int L, int R, Y y) { int k = IDX(y); int p = K; auto dfs = [&](auto& dfs, int d, int L, int R, int a, int b) -> void { if (p <= a || L == R || b <= k) return; if (d == 0) { chmin(p, a); return; } --d; int c = (a + b) / 2; int l0 = bv[d].count_prefix(L, 0), r0 = bv[d].count_prefix(R, 0); int l1 = L + mid[d] - l0, r1 = R + mid[d] - r0; dfs(dfs, d, l0, r0, a, c), dfs(dfs, d, l1, r1, c, b); }; dfs(dfs, log, L, R, 0, 1 << log); return (p == K ? infty<Y> : ItoY[p]); } // y 以下最大 OR -infty<T> Y prev(int L, int R, Y y) { int k = IDX(y + 1); int p = -1; auto dfs = [&](auto& dfs, int d, int L, int R, int a, int b) -> void { if (b - 1 <= p || L == R || k <= a) return; if (d == 0) { chmax(p, a); return; } --d; int c = (a + b) / 2; int l0 = bv[d].count_prefix(L, 0), r0 = bv[d].count_prefix(R, 0); int l1 = L + mid[d] - l0, r1 = R + mid[d] - r0; dfs(dfs, d, l1, r1, c, b), dfs(dfs, d, l0, r0, a, c); }; dfs(dfs, log, L, R, 0, 1 << log); return (p == -1 ? -infty<Y> : ItoY[p]); } Y median(bool UPPER, int L, int R) { assert(0 <= L && L < R && R <= n); int k = (UPPER ? (R - L) / 2 : (R - L - 1) / 2); return kth(L, R, k); } pair<Y, T> kth_value_and_prod(int L, int R, int k) { assert(0 <= k && k <= R - L); if (k == R - L) return {infty<Y>, seg[log].prod(L, R)}; int p = 0; T t = Mono::unit(); for (int d = log - 1; d >= 0; --d) { int l0 = bv[d].count_prefix(L, 0), r0 = bv[d].count_prefix(R, 0); int l1 = L + mid[d] - l0, r1 = R + mid[d] - r0; if (k < r0 - l0) { L = l0, R = r0; } else { t = Mono::op(t, seg[d].prod(l0, r0)), k -= r0 - l0, L = l1, R = r1, p |= 1 << d; } } t = Mono::op(t, seg[0].prod(L, L + k)); return {ItoY[p], t}; } T prod_index_range(int L, int R, int k1, int k2) { static_assert(has_inverse<Mono>::value); T t1 = kth_value_and_prod(L, R, k1).se; T t2 = kth_value_and_prod(L, R, k2).se; return Mono::op(Mono::inverse(t1), t2); } // [L,R) x [0,y) での check(cnt, prod) が true となる最大の (cnt,prod) template <typename F> pair<int, T> max_right(F check, int L, int R) { int cnt = 0; T t = Mono::unit(); assert(check(0, Mono::unit())); if (check(R - L, seg[log].prod(L, R))) { return {R - L, seg[log].prod(L, R)}; } for (int d = log - 1; d >= 0; --d) { int l0 = bv[d].count_prefix(L, 0), r0 = bv[d].count_prefix(R, 0); int l1 = L + mid[d] - l0, r1 = R + mid[d] - r0; int cnt1 = cnt + r0 - l0; T t1 = Mono::op(t, seg[d].prod(l0, r0)); if (check(cnt1, t1)) { cnt = cnt1, t = t1, L = l1, R = r1; } else { L = l0, R = r0; } } return {cnt, t}; } void set(int i, T t) { assert(0 <= i && i < n); int L = i, R = i + 1; seg[log].set(L, t); for (int d = log - 1; d >= 0; --d) { int l0 = bv[d].count_prefix(L, 0), r0 = bv[d].count_prefix(R, 0); int l1 = L + mid[d] - l0, r1 = R + mid[d] - r0; if (l0 < r0) L = l0, R = r0; if (l0 == r0) L = l1, R = r1; seg[d].set(L, t); } } void multiply(int i, T t) { assert(0 <= i && i < n); int L = i, R = i + 1; seg[log].multiply(L, t); for (int d = log - 1; d >= 0; --d) { int l0 = bv[d].count_prefix(L, 0), r0 = bv[d].count_prefix(R, 0); int l1 = L + mid[d] - l0, r1 = R + mid[d] - r0; if (l0 < r0) L = l0, R = r0; if (l0 == r0) L = l1, R = r1; seg[d].multiply(L, t); } } void add(int i, T t) { multiply(i, t); } }; #line 2 "graph/tree.hpp" #line 2 "ds/hashmap.hpp" // u64 -> Val template <typename Val> struct HashMap { // n は入れたいものの個数で ok HashMap(u32 n = 0) { build(n); } void build(u32 n) { u32 k = 8; while (k < n * 2) k *= 2; cap = k / 2, mask = k - 1; key.resize(k), val.resize(k), used.assign(k, 0); } // size を保ったまま. size=0 にするときは build すること. void clear() { used.assign(len(used), 0); cap = (mask + 1) / 2; } int size() { return len(used) / 2 - cap; } int index(const u64& k) { int i = 0; for (i = hash(k); used[i] && key[i] != k; i = (i + 1) & mask) {} return i; } Val& operator[](const u64& k) { if (cap == 0) extend(); int i = index(k); if (!used[i]) { used[i] = 1, key[i] = k, val[i] = Val{}, --cap; } return val[i]; } Val get(const u64& k, Val default_value) { int i = index(k); return (used[i] ? val[i] : default_value); } bool count(const u64& k) { int i = index(k); return used[i] && key[i] == k; } // f(key, val) template <typename F> void enumerate_all(F f) { FOR(i, len(used)) if (used[i]) f(key[i], val[i]); } private: u32 cap, mask; vc<u64> key; vc<Val> val; vc<bool> used; u64 hash(u64 x) { static const u64 FIXED_RANDOM = std::chrono::steady_clock::now().time_since_epoch().count(); x += FIXED_RANDOM; x = (x ^ (x >> 30)) * 0xbf58476d1ce4e5b9; x = (x ^ (x >> 27)) * 0x94d049bb133111eb; return (x ^ (x >> 31)) & mask; } void extend() { vc<pair<u64, Val>> dat; dat.reserve(len(used) / 2 - cap); FOR(i, len(used)) { if (used[i]) dat.eb(key[i], val[i]); } build(2 * len(dat)); for (auto& [a, b]: dat) (*this)[a] = b; } }; #line 3 "graph/base.hpp" template <typename T> struct Edge { int frm, to; T cost; int id; }; template <typename T = int, bool directed = false> struct Graph { static constexpr bool is_directed = directed; int N, M; using cost_type = T; using edge_type = Edge<T>; vector<edge_type> edges; vector<int> indptr; vector<edge_type> csr_edges; vc<int> vc_deg, vc_indeg, vc_outdeg; bool prepared; class OutgoingEdges { public: OutgoingEdges(const Graph* G, int l, int r) : G(G), l(l), r(r) {} const edge_type* begin() const { if (l == r) { return 0; } return &G->csr_edges[l]; } const edge_type* end() const { if (l == r) { return 0; } return &G->csr_edges[r]; } private: const Graph* G; int l, r; }; bool is_prepared() { return prepared; } Graph() : N(0), M(0), prepared(0) {} Graph(int N) : N(N), M(0), prepared(0) {} void build(int n) { N = n, M = 0; prepared = 0; edges.clear(); indptr.clear(); csr_edges.clear(); vc_deg.clear(); vc_indeg.clear(); vc_outdeg.clear(); } void add(int frm, int to, T cost = 1, int i = -1) { assert(!prepared); assert(0 <= frm && 0 <= to && to < N); if (i == -1) i = M; auto e = edge_type({frm, to, cost, i}); edges.eb(e); ++M; } #ifdef FASTIO // wt, off void read_tree(bool wt = false, int off = 1) { read_graph(N - 1, wt, off); } void read_graph(int M, bool wt = false, int off = 1) { for (int m = 0; m < M; ++m) { INT(a, b); a -= off, b -= off; if (!wt) { add(a, b); } else { T c; read(c); add(a, b, c); } } build(); } #endif void build() { assert(!prepared); prepared = true; indptr.assign(N + 1, 0); for (auto&& e: edges) { indptr[e.frm + 1]++; if (!directed) indptr[e.to + 1]++; } for (int v = 0; v < N; ++v) { indptr[v + 1] += indptr[v]; } auto counter = indptr; csr_edges.resize(indptr.back() + 1); for (auto&& e: edges) { csr_edges[counter[e.frm]++] = e; if (!directed) csr_edges[counter[e.to]++] = edge_type({e.to, e.frm, e.cost, e.id}); } } OutgoingEdges operator[](int v) const { assert(prepared); return {this, indptr[v], indptr[v + 1]}; } vc<int> deg_array() { if (vc_deg.empty()) calc_deg(); return vc_deg; } pair<vc<int>, vc<int>> deg_array_inout() { if (vc_indeg.empty()) calc_deg_inout(); return {vc_indeg, vc_outdeg}; } int deg(int v) { if (vc_deg.empty()) calc_deg(); return vc_deg[v]; } int in_deg(int v) { if (vc_indeg.empty()) calc_deg_inout(); return vc_indeg[v]; } int out_deg(int v) { if (vc_outdeg.empty()) calc_deg_inout(); return vc_outdeg[v]; } #ifdef FASTIO void debug() { print("Graph"); if (!prepared) { print("frm to cost id"); for (auto&& e: edges) print(e.frm, e.to, e.cost, e.id); } else { print("indptr", indptr); print("frm to cost id"); FOR(v, N) for (auto&& e: (*this)[v]) print(e.frm, e.to, e.cost, e.id); } } #endif vc<int> new_idx; vc<bool> used_e; // G における頂点 V[i] が、新しいグラフで i になるようにする // {G, es} // sum(deg(v)) の計算量になっていて、 // 新しいグラフの n+m より大きい可能性があるので注意 Graph<T, directed> rearrange(vc<int> V, bool keep_eid = 0) { if (len(new_idx) != N) new_idx.assign(N, -1); int n = len(V); FOR(i, n) new_idx[V[i]] = i; Graph<T, directed> G(n); vc<int> history; FOR(i, n) { for (auto&& e: (*this)[V[i]]) { if (len(used_e) <= e.id) used_e.resize(e.id + 1); if (used_e[e.id]) continue; int a = e.frm, b = e.to; if (new_idx[a] != -1 && new_idx[b] != -1) { history.eb(e.id); used_e[e.id] = 1; int eid = (keep_eid ? e.id : -1); G.add(new_idx[a], new_idx[b], e.cost, eid); } } } FOR(i, n) new_idx[V[i]] = -1; for (auto&& eid: history) used_e[eid] = 0; G.build(); return G; } Graph<T, true> to_directed_tree(int root = -1) { if (root == -1) root = 0; assert(!is_directed && prepared && M == N - 1); Graph<T, true> G1(N); vc<int> par(N, -1); auto dfs = [&](auto& dfs, int v) -> void { for (auto& e: (*this)[v]) { if (e.to == par[v]) continue; par[e.to] = v, dfs(dfs, e.to); } }; dfs(dfs, root); for (auto& e: edges) { int a = e.frm, b = e.to; if (par[a] == b) swap(a, b); assert(par[b] == a); G1.add(a, b, e.cost); } G1.build(); return G1; } HashMap<int> MP_FOR_EID; int get_eid(u64 a, u64 b) { if (len(MP_FOR_EID) == 0) { MP_FOR_EID.build(N - 1); for (auto& e: edges) { u64 a = e.frm, b = e.to; u64 k = to_eid_key(a, b); MP_FOR_EID[k] = e.id; } } return MP_FOR_EID.get(to_eid_key(a, b), -1); } u64 to_eid_key(u64 a, u64 b) { if (!directed && a > b) swap(a, b); return N * a + b; } private: void calc_deg() { assert(vc_deg.empty()); vc_deg.resize(N); for (auto&& e: edges) vc_deg[e.frm]++, vc_deg[e.to]++; } void calc_deg_inout() { assert(vc_indeg.empty()); vc_indeg.resize(N); vc_outdeg.resize(N); for (auto&& e: edges) { vc_indeg[e.to]++, vc_outdeg[e.frm]++; } } }; #line 4 "graph/tree.hpp" // HLD euler tour をとっていろいろ。 template <typename GT> struct Tree { using Graph_type = GT; GT &G; using WT = typename GT::cost_type; int N; vector<int> LID, RID, head, V, parent, VtoE; vc<int> depth; vc<WT> depth_weighted; Tree(GT &G, int r = 0, bool hld = 1) : G(G) { build(r, hld); } void build(int r = 0, bool hld = 1) { if (r == -1) return; // build を遅延したいとき N = G.N; LID.assign(N, -1), RID.assign(N, -1), head.assign(N, r); V.assign(N, -1), parent.assign(N, -1), VtoE.assign(N, -1); depth.assign(N, -1), depth_weighted.assign(N, 0); assert(G.is_prepared()); int t1 = 0; dfs_sz(r, -1, hld); dfs_hld(r, t1); } void dfs_sz(int v, int p, bool hld) { auto &sz = RID; parent[v] = p; depth[v] = (p == -1 ? 0 : depth[p] + 1); sz[v] = 1; int l = G.indptr[v], r = G.indptr[v + 1]; auto &csr = G.csr_edges; // 使う辺があれば先頭にする for (int i = r - 2; i >= l; --i) { if (hld && depth[csr[i + 1].to] == -1) swap(csr[i], csr[i + 1]); } int hld_sz = 0; for (int i = l; i < r; ++i) { auto e = csr[i]; if (depth[e.to] != -1) continue; depth_weighted[e.to] = depth_weighted[v] + e.cost; VtoE[e.to] = e.id; dfs_sz(e.to, v, hld); sz[v] += sz[e.to]; if (hld && chmax(hld_sz, sz[e.to]) && l < i) { swap(csr[l], csr[i]); } } } void dfs_hld(int v, int ×) { LID[v] = times++; RID[v] += LID[v]; V[LID[v]] = v; bool heavy = true; for (auto &&e: G[v]) { if (depth[e.to] <= depth[v]) continue; head[e.to] = (heavy ? head[v] : e.to); heavy = false; dfs_hld(e.to, times); } } vc<int> heavy_path_at(int v) { vc<int> P = {v}; while (1) { int a = P.back(); for (auto &&e: G[a]) { if (e.to != parent[a] && head[e.to] == v) { P.eb(e.to); break; } } if (P.back() == a) break; } return P; } int heavy_child(int v) { int k = LID[v] + 1; if (k == N) return -1; int w = V[k]; return (parent[w] == v ? w : -1); } int e_to_v(int eid) { auto e = G.edges[eid]; return (parent[e.frm] == e.to ? e.frm : e.to); } int v_to_e(int v) { return VtoE[v]; } int get_eid(int u, int v) { if (parent[u] != v) swap(u, v); assert(parent[u] == v); return VtoE[u]; } int ELID(int v) { return 2 * LID[v] - depth[v]; } int ERID(int v) { return 2 * RID[v] - depth[v] - 1; } // 目標地点へ進む個数が k int LA(int v, int k) { assert(k <= depth[v]); while (1) { int u = head[v]; if (LID[v] - k >= LID[u]) return V[LID[v] - k]; k -= LID[v] - LID[u] + 1; v = parent[u]; } } int la(int u, int v) { return LA(u, v); } int LCA(int u, int v) { for (;; v = parent[head[v]]) { if (LID[u] > LID[v]) swap(u, v); if (head[u] == head[v]) return u; } } int meet(int a, int b, int c) { return LCA(a, b) ^ LCA(a, c) ^ LCA(b, c); } int lca(int u, int v) { return LCA(u, v); } int subtree_size(int v, int root = -1) { if (root == -1) return RID[v] - LID[v]; if (v == root) return N; int x = jump(v, root, 1); if (in_subtree(v, x)) return RID[v] - LID[v]; return N - RID[x] + LID[x]; } int dist(int a, int b) { int c = LCA(a, b); return depth[a] + depth[b] - 2 * depth[c]; } WT dist_weighted(int a, int b) { int c = LCA(a, b); return depth_weighted[a] + depth_weighted[b] - WT(2) * depth_weighted[c]; } // a is in b bool in_subtree(int a, int b) { return LID[b] <= LID[a] && LID[a] < RID[b]; } int jump(int a, int b, ll k) { if (k == 1) { if (a == b) return -1; return (in_subtree(b, a) ? LA(b, depth[b] - depth[a] - 1) : parent[a]); } int c = LCA(a, b); int d_ac = depth[a] - depth[c]; int d_bc = depth[b] - depth[c]; if (k > d_ac + d_bc) return -1; if (k <= d_ac) return LA(a, k); return LA(b, d_ac + d_bc - k); } vc<int> collect_child(int v) { vc<int> res; for (auto &&e: G[v]) if (e.to != parent[v]) res.eb(e.to); return res; } vc<int> collect_light(int v) { vc<int> res; bool skip = true; for (auto &&e: G[v]) if (e.to != parent[v]) { if (!skip) res.eb(e.to); skip = false; } return res; } vc<pair<int, int>> get_path_decomposition(int u, int v, bool edge) { // [始点, 終点] の"閉"区間列。 vc<pair<int, int>> up, down; while (1) { if (head[u] == head[v]) break; if (LID[u] < LID[v]) { down.eb(LID[head[v]], LID[v]); v = parent[head[v]]; } else { up.eb(LID[u], LID[head[u]]); u = parent[head[u]]; } } if (LID[u] < LID[v]) down.eb(LID[u] + edge, LID[v]); elif (LID[v] + edge <= LID[u]) up.eb(LID[u], LID[v] + edge); reverse(all(down)); up.insert(up.end(), all(down)); return up; } // 辺の列の情報 (frm,to,str) // str = "heavy_up", "heavy_down", "light_up", "light_down" vc<tuple<int, int, string>> get_path_decomposition_detail(int u, int v) { vc<tuple<int, int, string>> up, down; while (1) { if (head[u] == head[v]) break; if (LID[u] < LID[v]) { if (v != head[v]) down.eb(head[v], v, "heavy_down"), v = head[v]; down.eb(parent[v], v, "light_down"), v = parent[v]; } else { if (u != head[u]) up.eb(u, head[u], "heavy_up"), u = head[u]; up.eb(u, parent[u], "light_up"), u = parent[u]; } } if (LID[u] < LID[v]) down.eb(u, v, "heavy_down"); elif (LID[v] < LID[u]) up.eb(u, v, "heavy_up"); reverse(all(down)); concat(up, down); return up; } vc<int> restore_path(int u, int v) { vc<int> P; for (auto &&[a, b]: get_path_decomposition(u, v, 0)) { if (a <= b) { FOR(i, a, b + 1) P.eb(V[i]); } else { FOR_R(i, b, a + 1) P.eb(V[i]); } } return P; } // path [a,b] と [c,d] の交わり. 空ならば {-1,-1}. // https://codeforces.com/problemset/problem/500/G pair<int, int> path_intersection(int a, int b, int c, int d) { int ab = lca(a, b), ac = lca(a, c), ad = lca(a, d); int bc = lca(b, c), bd = lca(b, d), cd = lca(c, d); int x = ab ^ ac ^ bc, y = ab ^ ad ^ bd; // meet(a,b,c), meet(a,b,d) if (x != y) return {x, y}; int z = ac ^ ad ^ cd; if (x != z) x = -1; return {x, x}; } // uv path 上で check(v) を満たす最後の v // なければ (つまり check(v) が ng )-1 template <class F> int max_path(F check, int u, int v) { if (!check(u)) return -1; auto pd = get_path_decomposition(u, v, false); for (auto [a, b]: pd) { if (!check(V[a])) return u; if (check(V[b])) { u = V[b]; continue; } int c = binary_search([&](int c) -> bool { return check(V[c]); }, a, b, 0); return V[c]; } return u; } }; #line 4 "graph/ds/tree_wavelet_matrix.hpp" // https://atcoder.jp/contests/pakencamp-2022-day1/tasks/pakencamp_2022_day1_j // https://atcoder.jp/contests/utpc2011/tasks/utpc2011_12 template <typename TREE, bool edge, typename T, bool COMPRESS, typename Monoid = Monoid_Add<T>> struct Tree_Wavelet_Matrix { TREE& tree; int N; using WM = Wavelet_Matrix<T, COMPRESS, Monoid_Add<T>>; using X = typename Monoid::value_type; WM wm; Tree_Wavelet_Matrix(TREE& tree, vc<T> A, vc<X> SUM_data = {}, int log = -1) : tree(tree), N(tree.N) { vc<X>& S = SUM_data; vc<T> A1; vc<X> S1; A1.resize(N); if (!S.empty()) S1.resize(N); if (!edge) { assert(len(A) == N && (len(S) == 0 || len(S) == N)); FOR(v, N) A1[tree.LID[v]] = A[v]; if (len(S) == N) { FOR(v, N) S1[tree.LID[v]] = S[v]; } wm.build(A1, S1, log); } else { assert(len(A) == N - 1 && (len(S) == 0 || len(S) == N - 1)); if (!S.empty()) { FOR(e, N - 1) { S1[tree.LID[tree.e_to_v(e)]] = S[e]; } } FOR(e, N - 1) { A1[tree.LID[tree.e_to_v(e)]] = A[e]; } wm.build(A1, S1, log); } } // xor した結果で [a, b) に収まるものを数える int count_path(int s, int t, T a, T b, T xor_val = 0) { return wm.count(get_segments(s, t), a, b, xor_val); } // xor した結果で [a, b) に収まるものを数える int count_subtree(int u, T a, T b, T xor_val = 0) { int l = tree.LID[u], r = tree.RID[u]; return wm.count(l + edge, r, a, b, xor_val); } // xor した結果で、[L, R) の中で k>=0 番目と prefix sum pair<T, X> kth_value_and_sum_path(int s, int t, int k, T xor_val = 0) { return wm.kth_value_and_sum(get_segments(s, t), k, xor_val); } // xor した結果で、[L, R) の中で k>=0 番目と prefix sum pair<T, X> kth_value_and_sum_subtree(int u, int k, T xor_val = 0) { int l = tree.LID[u], r = tree.RID[u]; return wm.kth_value_and_sum(l + edge, r, k, xor_val); } // xor した結果で、[L, R) の中で k>=0 番目 T kth_path(int s, int t, int k, T xor_val = 0) { return wm.kth(get_segments(s, t), k, xor_val); } // xor した結果で、[L, R) の中で k>=0 番目 T kth_subtree(int u, int k, T xor_val = 0) { int l = tree.LID[u], r = tree.RID[u]; return wm.kth(l + edge, r, k, xor_val); } // xor した結果で、[L, R) の中で中央値。 // LOWER = true:下側中央値、false:上側中央値 T median_path(bool UPPER, int s, int t, T xor_val = 0) { return wm.median(UPPER, get_segments(s, t), xor_val); } T median_subtree(bool UPPER, int u, T xor_val = 0) { int l = tree.LID[u], r = tree.RID[u]; return wm.median(UPPER, l + edge, r, xor_val); } // xor した結果で [k1, k2) 番目であるところの SUM_data の和 X sum_path(int s, int t, int k1, int k2, T xor_val = 0) { return wm.sum(get_segments(s, t), k1, k2, xor_val); } // xor した結果で [k1, k2) 番目であるところの SUM_data の和 X sum_subtree(int u, int k1, int k2, T xor_val = 0) { int l = tree.LID[u], r = tree.RID[u]; return wm.sum(l + edge, r, k1, k2, xor_val); } X sum_all_path(int s, int t) { return wm.sum_all(get_segments(s, t)); } X sum_all_subtree(int u) { int l = tree.LID[u], r = tree.RID[u]; return wm.sum_all(l + edge, r); } private: vc<pair<int, int>> get_segments(int s, int t) { vc<pair<int, int>> segments = tree.get_path_decomposition(s, t, edge); for (auto&& [a, b]: segments) { if (a >= b) swap(a, b); ++b; } return segments; } };