This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub maspypy/library
#include "graph/ds/incremental_centroid.hpp"
#include "graph/ds/tree_abelgroup.hpp" #include "ds/fastset.hpp" // 木は固定。頂点重みを +1 できる。 // cent: 重心 // max_subtree template <typename TREE> struct Incremental_Centroid { TREE& tree; int N; int cent; pair<int, int> max_subtree; // (adj, size) int wt_sm; Tree_AbelGroup<TREE, Monoid_Add<int>, 0, 0, 1> TA; FastSet ss; Incremental_Centroid(TREE& tree) : tree(tree), N(tree.N), cent(0), max_subtree(0, 0), wt_sm(0), TA(tree), ss(N) {} int get_subtree_wt(int v) { assert(v != cent); // cent から見て v 方向 if (tree.in_subtree(v, cent)) { return TA.prod_subtree(tree.jump(cent, v, 1)); } return wt_sm - TA.prod_subtree(cent); } int move_to(int v) { // 圧縮木上で cent から v に進む if (tree.in_subtree(v, cent)) { // v 方向にある重みの lca int a = tree.jump(cent, v, 1); int L = tree.LID[a], R = tree.RID[a]; L = ss.next(L), R = ss.prev(R - 1); int x = tree.V[L], y = tree.V[R]; return tree.lca(x, y); } int L = tree.LID[cent], R = tree.RID[cent]; int x = v; vc<int> I; I.eb(ss.next(0)); if (1 < L) I.eb(ss.prev(L - 1)); if (R < N - 1) I.eb(ss.next(R)); I.eb(ss.prev(N - 1)); for (auto&& idx: I) { if (idx == -1 || idx == N) continue; if (L <= idx && idx < R) continue; int y = tree.V[idx]; x = tree.meet(x, y, cent); } return x; } void add(int v) { ss.insert(tree.LID[v]), TA.add(v, 1), wt_sm++; if (v == cent) return; int wt = get_subtree_wt(v); if (max_subtree.se < wt) max_subtree = {tree.jump(cent, v, 1), wt}; if (2 * wt <= wt_sm) return; int k = wt; assert(wt_sm == 2 * k - 1); int to = move_to(v); max_subtree = {tree.jump(to, cent, 1), k - 1}; cent = to; } };
#line 2 "alg/monoid/add.hpp" template <typename E> struct Monoid_Add { using X = E; using value_type = X; static constexpr X op(const X &x, const X &y) noexcept { return x + y; } static constexpr X inverse(const X &x) noexcept { return -x; } static constexpr X power(const X &x, ll n) noexcept { return X(n) * x; } static constexpr X unit() { return X(0); } static constexpr bool commute = true; }; #line 3 "ds/fenwicktree/fenwicktree.hpp" template <typename Monoid> struct FenwickTree { using G = Monoid; using MX = Monoid; using E = typename G::value_type; int n; vector<E> dat; E total; FenwickTree() {} FenwickTree(int n) { build(n); } template <typename F> FenwickTree(int n, F f) { build(n, f); } FenwickTree(const vc<E>& v) { build(v); } void build(int m) { n = m; dat.assign(m, G::unit()); total = G::unit(); } void build(const vc<E>& v) { build(len(v), [&](int i) -> E { return v[i]; }); } template <typename F> void build(int m, F f) { n = m; dat.clear(); dat.reserve(n); total = G::unit(); FOR(i, n) { dat.eb(f(i)); } for (int i = 1; i <= n; ++i) { int j = i + (i & -i); if (j <= n) dat[j - 1] = G::op(dat[i - 1], dat[j - 1]); } total = prefix_sum(m); } E prod_all() { return total; } E sum_all() { return total; } E sum(int k) { return prefix_sum(k); } E prod(int k) { return prefix_prod(k); } E prefix_sum(int k) { return prefix_prod(k); } E prefix_prod(int k) { chmin(k, n); E ret = G::unit(); for (; k > 0; k -= k & -k) ret = G::op(ret, dat[k - 1]); return ret; } E sum(int L, int R) { return prod(L, R); } E prod(int L, int R) { chmax(L, 0), chmin(R, n); if (L == 0) return prefix_prod(R); assert(0 <= L && L <= R && R <= n); E pos = G::unit(), neg = G::unit(); while (L < R) { pos = G::op(pos, dat[R - 1]), R -= R & -R; } while (R < L) { neg = G::op(neg, dat[L - 1]), L -= L & -L; } return G::op(pos, G::inverse(neg)); } vc<E> get_all() { vc<E> res(n); FOR(i, n) res[i] = prod(i, i + 1); return res; } void add(int k, E x) { multiply(k, x); } void multiply(int k, E x) { static_assert(G::commute); total = G::op(total, x); for (++k; k <= n; k += k & -k) dat[k - 1] = G::op(dat[k - 1], x); } void set(int k, E x) { add(k, G::op(G::inverse(prod(k, k + 1)), x)); } template <class F> int max_right(const F check, int L = 0) { assert(check(G::unit())); E s = G::unit(); int i = L; // 2^k 進むとダメ int k = [&]() { while (1) { if (i % 2 == 1) { s = G::op(s, G::inverse(dat[i - 1])), i -= 1; } if (i == 0) { return topbit(n) + 1; } int k = lowbit(i) - 1; if (i + (1 << k) > n) return k; E t = G::op(s, dat[i + (1 << k) - 1]); if (!check(t)) { return k; } s = G::op(s, G::inverse(dat[i - 1])), i -= i & -i; } }(); while (k) { --k; if (i + (1 << k) - 1 < len(dat)) { E t = G::op(s, dat[i + (1 << k) - 1]); if (check(t)) { i += (1 << k), s = t; } } } return i; } // check(i, x) template <class F> int max_right_with_index(const F check, int L = 0) { assert(check(L, G::unit())); E s = G::unit(); int i = L; // 2^k 進むとダメ int k = [&]() { while (1) { if (i % 2 == 1) { s = G::op(s, G::inverse(dat[i - 1])), i -= 1; } if (i == 0) { return topbit(n) + 1; } int k = lowbit(i) - 1; if (i + (1 << k) > n) return k; E t = G::op(s, dat[i + (1 << k) - 1]); if (!check(i + (1 << k), t)) { return k; } s = G::op(s, G::inverse(dat[i - 1])), i -= i & -i; } }(); while (k) { --k; if (i + (1 << k) - 1 < len(dat)) { E t = G::op(s, dat[i + (1 << k) - 1]); if (check(i + (1 << k), t)) { i += (1 << k), s = t; } } } return i; } template <class F> int min_left(const F check, int R) { assert(check(G::unit())); E s = G::unit(); int i = R; // false になるところまで戻る int k = 0; while (i > 0 && check(s)) { s = G::op(s, dat[i - 1]); k = lowbit(i); i -= i & -i; } if (check(s)) { assert(i == 0); return 0; } // 2^k 進むと ok になる // false を維持して進む while (k) { --k; E t = G::op(s, G::inverse(dat[i + (1 << k) - 1])); if (!check(t)) { i += (1 << k), s = t; } } return i + 1; } int kth(E k, int L = 0) { return max_right([&k](E x) -> bool { return x <= k; }, L); } }; #line 2 "graph/tree.hpp" #line 2 "graph/base.hpp" template <typename T> struct Edge { int frm, to; T cost; int id; }; template <typename T = int, bool directed = false> struct Graph { static constexpr bool is_directed = directed; int N, M; using cost_type = T; using edge_type = Edge<T>; vector<edge_type> edges; vector<int> indptr; vector<edge_type> csr_edges; vc<int> vc_deg, vc_indeg, vc_outdeg; bool prepared; class OutgoingEdges { public: OutgoingEdges(const Graph* G, int l, int r) : G(G), l(l), r(r) {} const edge_type* begin() const { if (l == r) { return 0; } return &G->csr_edges[l]; } const edge_type* end() const { if (l == r) { return 0; } return &G->csr_edges[r]; } private: const Graph* G; int l, r; }; bool is_prepared() { return prepared; } Graph() : N(0), M(0), prepared(0) {} Graph(int N) : N(N), M(0), prepared(0) {} void build(int n) { N = n, M = 0; prepared = 0; edges.clear(); indptr.clear(); csr_edges.clear(); vc_deg.clear(); vc_indeg.clear(); vc_outdeg.clear(); } void add(int frm, int to, T cost = 1, int i = -1) { assert(!prepared); assert(0 <= frm && 0 <= to && to < N); if (i == -1) i = M; auto e = edge_type({frm, to, cost, i}); edges.eb(e); ++M; } #ifdef FASTIO // wt, off void read_tree(bool wt = false, int off = 1) { read_graph(N - 1, wt, off); } void read_graph(int M, bool wt = false, int off = 1) { for (int m = 0; m < M; ++m) { INT(a, b); a -= off, b -= off; if (!wt) { add(a, b); } else { T c; read(c); add(a, b, c); } } build(); } #endif void build() { assert(!prepared); prepared = true; indptr.assign(N + 1, 0); for (auto&& e: edges) { indptr[e.frm + 1]++; if (!directed) indptr[e.to + 1]++; } for (int v = 0; v < N; ++v) { indptr[v + 1] += indptr[v]; } auto counter = indptr; csr_edges.resize(indptr.back() + 1); for (auto&& e: edges) { csr_edges[counter[e.frm]++] = e; if (!directed) csr_edges[counter[e.to]++] = edge_type({e.to, e.frm, e.cost, e.id}); } } OutgoingEdges operator[](int v) const { assert(prepared); return {this, indptr[v], indptr[v + 1]}; } vc<int> deg_array() { if (vc_deg.empty()) calc_deg(); return vc_deg; } pair<vc<int>, vc<int>> deg_array_inout() { if (vc_indeg.empty()) calc_deg_inout(); return {vc_indeg, vc_outdeg}; } int deg(int v) { if (vc_deg.empty()) calc_deg(); return vc_deg[v]; } int in_deg(int v) { if (vc_indeg.empty()) calc_deg_inout(); return vc_indeg[v]; } int out_deg(int v) { if (vc_outdeg.empty()) calc_deg_inout(); return vc_outdeg[v]; } #ifdef FASTIO void debug() { print("Graph"); if (!prepared) { print("frm to cost id"); for (auto&& e: edges) print(e.frm, e.to, e.cost, e.id); } else { print("indptr", indptr); print("frm to cost id"); FOR(v, N) for (auto&& e: (*this)[v]) print(e.frm, e.to, e.cost, e.id); } } #endif vc<int> new_idx; vc<bool> used_e; // G における頂点 V[i] が、新しいグラフで i になるようにする // {G, es} // sum(deg(v)) の計算量になっていて、 // 新しいグラフの n+m より大きい可能性があるので注意 Graph<T, directed> rearrange(vc<int> V, bool keep_eid = 0) { if (len(new_idx) != N) new_idx.assign(N, -1); int n = len(V); FOR(i, n) new_idx[V[i]] = i; Graph<T, directed> G(n); vc<int> history; FOR(i, n) { for (auto&& e: (*this)[V[i]]) { if (len(used_e) <= e.id) used_e.resize(e.id + 1); if (used_e[e.id]) continue; int a = e.frm, b = e.to; if (new_idx[a] != -1 && new_idx[b] != -1) { history.eb(e.id); used_e[e.id] = 1; int eid = (keep_eid ? e.id : -1); G.add(new_idx[a], new_idx[b], e.cost, eid); } } } FOR(i, n) new_idx[V[i]] = -1; for (auto&& eid: history) used_e[eid] = 0; G.build(); return G; } Graph<T, true> to_directed_tree(int root = -1) { if (root == -1) root = 0; assert(!is_directed && prepared && M == N - 1); Graph<T, true> G1(N); vc<int> par(N, -1); auto dfs = [&](auto& dfs, int v) -> void { for (auto& e: (*this)[v]) { if (e.to == par[v]) continue; par[e.to] = v, dfs(dfs, e.to); } }; dfs(dfs, root); for (auto& e: edges) { int a = e.frm, b = e.to; if (par[a] == b) swap(a, b); assert(par[b] == a); G1.add(a, b, e.cost); } G1.build(); return G1; } private: void calc_deg() { assert(vc_deg.empty()); vc_deg.resize(N); for (auto&& e: edges) vc_deg[e.frm]++, vc_deg[e.to]++; } void calc_deg_inout() { assert(vc_indeg.empty()); vc_indeg.resize(N); vc_outdeg.resize(N); for (auto&& e: edges) { vc_indeg[e.to]++, vc_outdeg[e.frm]++; } } }; #line 4 "graph/tree.hpp" // HLD euler tour をとっていろいろ。 template <typename GT> struct Tree { using Graph_type = GT; GT &G; using WT = typename GT::cost_type; int N; vector<int> LID, RID, head, V, parent, VtoE; vc<int> depth; vc<WT> depth_weighted; Tree(GT &G, int r = 0, bool hld = 1) : G(G) { build(r, hld); } void build(int r = 0, bool hld = 1) { if (r == -1) return; // build を遅延したいとき N = G.N; LID.assign(N, -1), RID.assign(N, -1), head.assign(N, r); V.assign(N, -1), parent.assign(N, -1), VtoE.assign(N, -1); depth.assign(N, -1), depth_weighted.assign(N, 0); assert(G.is_prepared()); int t1 = 0; dfs_sz(r, -1, hld); dfs_hld(r, t1); } void dfs_sz(int v, int p, bool hld) { auto &sz = RID; parent[v] = p; depth[v] = (p == -1 ? 0 : depth[p] + 1); sz[v] = 1; int l = G.indptr[v], r = G.indptr[v + 1]; auto &csr = G.csr_edges; // 使う辺があれば先頭にする for (int i = r - 2; i >= l; --i) { if (hld && depth[csr[i + 1].to] == -1) swap(csr[i], csr[i + 1]); } int hld_sz = 0; for (int i = l; i < r; ++i) { auto e = csr[i]; if (depth[e.to] != -1) continue; depth_weighted[e.to] = depth_weighted[v] + e.cost; VtoE[e.to] = e.id; dfs_sz(e.to, v, hld); sz[v] += sz[e.to]; if (hld && chmax(hld_sz, sz[e.to]) && l < i) { swap(csr[l], csr[i]); } } } void dfs_hld(int v, int ×) { LID[v] = times++; RID[v] += LID[v]; V[LID[v]] = v; bool heavy = true; for (auto &&e: G[v]) { if (depth[e.to] <= depth[v]) continue; head[e.to] = (heavy ? head[v] : e.to); heavy = false; dfs_hld(e.to, times); } } vc<int> heavy_path_at(int v) { vc<int> P = {v}; while (1) { int a = P.back(); for (auto &&e: G[a]) { if (e.to != parent[a] && head[e.to] == v) { P.eb(e.to); break; } } if (P.back() == a) break; } return P; } int heavy_child(int v) { int k = LID[v] + 1; if (k == N) return -1; int w = V[k]; return (parent[w] == v ? w : -1); } int e_to_v(int eid) { auto e = G.edges[eid]; return (parent[e.frm] == e.to ? e.frm : e.to); } int v_to_e(int v) { return VtoE[v]; } int get_eid(int u, int v) { if (parent[u] != v) swap(u, v); assert(parent[u] == v); return VtoE[u]; } int ELID(int v) { return 2 * LID[v] - depth[v]; } int ERID(int v) { return 2 * RID[v] - depth[v] - 1; } // 目標地点へ進む個数が k int LA(int v, int k) { assert(k <= depth[v]); while (1) { int u = head[v]; if (LID[v] - k >= LID[u]) return V[LID[v] - k]; k -= LID[v] - LID[u] + 1; v = parent[u]; } } int la(int u, int v) { return LA(u, v); } int LCA(int u, int v) { for (;; v = parent[head[v]]) { if (LID[u] > LID[v]) swap(u, v); if (head[u] == head[v]) return u; } } int meet(int a, int b, int c) { return LCA(a, b) ^ LCA(a, c) ^ LCA(b, c); } int lca(int u, int v) { return LCA(u, v); } int subtree_size(int v, int root = -1) { if (root == -1) return RID[v] - LID[v]; if (v == root) return N; int x = jump(v, root, 1); if (in_subtree(v, x)) return RID[v] - LID[v]; return N - RID[x] + LID[x]; } int dist(int a, int b) { int c = LCA(a, b); return depth[a] + depth[b] - 2 * depth[c]; } WT dist_weighted(int a, int b) { int c = LCA(a, b); return depth_weighted[a] + depth_weighted[b] - WT(2) * depth_weighted[c]; } // a is in b bool in_subtree(int a, int b) { return LID[b] <= LID[a] && LID[a] < RID[b]; } int jump(int a, int b, ll k) { if (k == 1) { if (a == b) return -1; return (in_subtree(b, a) ? LA(b, depth[b] - depth[a] - 1) : parent[a]); } int c = LCA(a, b); int d_ac = depth[a] - depth[c]; int d_bc = depth[b] - depth[c]; if (k > d_ac + d_bc) return -1; if (k <= d_ac) return LA(a, k); return LA(b, d_ac + d_bc - k); } vc<int> collect_child(int v) { vc<int> res; for (auto &&e: G[v]) if (e.to != parent[v]) res.eb(e.to); return res; } vc<int> collect_light(int v) { vc<int> res; bool skip = true; for (auto &&e: G[v]) if (e.to != parent[v]) { if (!skip) res.eb(e.to); skip = false; } return res; } vc<pair<int, int>> get_path_decomposition(int u, int v, bool edge) { // [始点, 終点] の"閉"区間列。 vc<pair<int, int>> up, down; while (1) { if (head[u] == head[v]) break; if (LID[u] < LID[v]) { down.eb(LID[head[v]], LID[v]); v = parent[head[v]]; } else { up.eb(LID[u], LID[head[u]]); u = parent[head[u]]; } } if (LID[u] < LID[v]) down.eb(LID[u] + edge, LID[v]); elif (LID[v] + edge <= LID[u]) up.eb(LID[u], LID[v] + edge); reverse(all(down)); up.insert(up.end(), all(down)); return up; } // 辺の列の情報 (frm,to,str) // str = "heavy_up", "heavy_down", "light_up", "light_down" vc<tuple<int, int, string>> get_path_decomposition_detail(int u, int v) { vc<tuple<int, int, string>> up, down; while (1) { if (head[u] == head[v]) break; if (LID[u] < LID[v]) { if (v != head[v]) down.eb(head[v], v, "heavy_down"), v = head[v]; down.eb(parent[v], v, "light_down"), v = parent[v]; } else { if (u != head[u]) up.eb(u, head[u], "heavy_up"), u = head[u]; up.eb(u, parent[u], "light_up"), u = parent[u]; } } if (LID[u] < LID[v]) down.eb(u, v, "heavy_down"); elif (LID[v] < LID[u]) up.eb(u, v, "heavy_up"); reverse(all(down)); concat(up, down); return up; } vc<int> restore_path(int u, int v) { vc<int> P; for (auto &&[a, b]: get_path_decomposition(u, v, 0)) { if (a <= b) { FOR(i, a, b + 1) P.eb(V[i]); } else { FOR_R(i, b, a + 1) P.eb(V[i]); } } return P; } // path [a,b] と [c,d] の交わり. 空ならば {-1,-1}. // https://codeforces.com/problemset/problem/500/G pair<int, int> path_intersection(int a, int b, int c, int d) { int ab = lca(a, b), ac = lca(a, c), ad = lca(a, d); int bc = lca(b, c), bd = lca(b, d), cd = lca(c, d); int x = ab ^ ac ^ bc, y = ab ^ ad ^ bd; // meet(a,b,c), meet(a,b,d) if (x != y) return {x, y}; int z = ac ^ ad ^ cd; if (x != z) x = -1; return {x, x}; } // uv path 上で check(v) を満たす最後の v // なければ (つまり check(v) が ng )-1 template <class F> int max_path(F check, int u, int v) { if (!check(u)) return -1; auto pd = get_path_decomposition(u, v, false); for (auto [a, b]: pd) { if (!check(V[a])) return u; if (check(V[b])) { u = V[b]; continue; } int c = binary_search([&](int c) -> bool { return check(V[c]); }, a, b, 0); return V[c]; } return u; } }; #line 3 "graph/ds/tree_abelgroup.hpp" template <typename TREE, typename AbelGroup, bool edge, bool path_query, bool subtree_query> struct Tree_AbelGroup { using MX = AbelGroup; using X = typename MX::value_type; TREE &tree; int N; FenwickTree<MX> bit, bit_subtree; Tree_AbelGroup(TREE &tree) : tree(tree), N(tree.N) { build([](int i) -> X { return MX::unit(); }); } Tree_AbelGroup(TREE &tree, vc<X> &dat) : tree(tree), N(tree.N) { build([&](int i) -> X { return dat[i]; }); } template <typename F> Tree_AbelGroup(TREE &tree, F f) : tree(tree), N(tree.N) { build(f); } template <typename F> void build(F f) { vc<X> bit_raw_1(2 * N); vc<X> bit_raw_2(N); FOR(v, N) { X x = MX::unit(); if (!edge) x = f(v); if (edge) x = (v == 0 ? MX::unit() : f(tree.v_to_e(v))); bit_raw_1[tree.ELID(v)] = x; bit_raw_1[tree.ERID(v)] = MX::inverse(x); bit_raw_2[tree.LID[v]] = x; } if constexpr (path_query) bit.build(bit_raw_1); if constexpr (subtree_query) bit_subtree.build(bit_raw_2); } void add(int i, X x) { int v = (edge ? tree.e_to_v(i) : i); if constexpr (path_query) { bit.add(tree.ELID(v), x); bit.add(tree.ERID(v), MX::inverse(x)); } if constexpr (subtree_query) bit_subtree.add(tree.LID[v], x); } void multiply(int i, X x) { add(i, x); } X prod_path(int frm, int to) { static_assert(path_query); int lca = tree.LCA(frm, to); // [frm, lca) X x1 = bit.prod(tree.ELID(lca) + 1, tree.ELID(frm) + 1); // edge なら (lca, to]、vertex なら [lca, to] X x2 = bit.prod(tree.ELID(lca) + edge, tree.ELID(to) + 1); return MX::op(x1, x2); } X prod_subtree(int u, int root = -1) { static_assert(subtree_query); int l = tree.LID[u], r = tree.RID[u]; if (root == -1) return bit_subtree.prod(l + edge, r); if (root == u) return bit_subtree.prod_all(); if (tree.in_subtree(u, root)) return bit_subtree.prod(l + edge, r); return MX::op(bit_subtree.prod(0, l + 1), bit_subtree.prod(r, N)); } }; #line 2 "ds/fastset.hpp" // 64-ary tree // space: (N/63) * u64 struct FastSet { static constexpr u32 B = 64; int n, log; vvc<u64> seg; FastSet() {} FastSet(int n) { build(n); } int size() { return n; } template <typename F> FastSet(int n, F f) { build(n, f); } void build(int m) { seg.clear(); n = m; do { seg.push_back(vc<u64>((m + B - 1) / B)); m = (m + B - 1) / B; } while (m > 1); log = len(seg); } template <typename F> void build(int n, F f) { build(n); FOR(i, n) { seg[0][i / B] |= u64(f(i)) << (i % B); } FOR(h, log - 1) { FOR(i, len(seg[h])) { seg[h + 1][i / B] |= u64(bool(seg[h][i])) << (i % B); } } } bool operator[](int i) const { return seg[0][i / B] >> (i % B) & 1; } void insert(int i) { assert(0 <= i && i < n); for (int h = 0; h < log; h++) { seg[h][i / B] |= u64(1) << (i % B), i /= B; } } void add(int i) { insert(i); } void erase(int i) { assert(0 <= i && i < n); u64 x = 0; for (int h = 0; h < log; h++) { seg[h][i / B] &= ~(u64(1) << (i % B)); seg[h][i / B] |= x << (i % B); x = bool(seg[h][i / B]); i /= B; } } void remove(int i) { erase(i); } // min[x,n) or n int next(int i) { assert(i <= n); chmax(i, 0); for (int h = 0; h < log; h++) { if (i / B == seg[h].size()) break; u64 d = seg[h][i / B] >> (i % B); if (!d) { i = i / B + 1; continue; } i += lowbit(d); for (int g = h - 1; g >= 0; g--) { i *= B; i += lowbit(seg[g][i / B]); } return i; } return n; } // max [0,x], or -1 int prev(int i) { assert(i >= -1); if (i >= n) i = n - 1; for (int h = 0; h < log; h++) { if (i == -1) break; u64 d = seg[h][i / B] << (63 - i % B); if (!d) { i = i / B - 1; continue; } i -= __builtin_clzll(d); for (int g = h - 1; g >= 0; g--) { i *= B; i += topbit(seg[g][i / B]); } return i; } return -1; } bool any(int l, int r) { return next(l) < r; } // [l, r) template <typename F> void enumerate(int l, int r, F f) { for (int x = next(l); x < r; x = next(x + 1)) f(x); } string to_string() { string s(n, '?'); for (int i = 0; i < n; ++i) s[i] = ((*this)[i] ? '1' : '0'); return s; } }; #line 3 "graph/ds/incremental_centroid.hpp" // 木は固定。頂点重みを +1 できる。 // cent: 重心 // max_subtree template <typename TREE> struct Incremental_Centroid { TREE& tree; int N; int cent; pair<int, int> max_subtree; // (adj, size) int wt_sm; Tree_AbelGroup<TREE, Monoid_Add<int>, 0, 0, 1> TA; FastSet ss; Incremental_Centroid(TREE& tree) : tree(tree), N(tree.N), cent(0), max_subtree(0, 0), wt_sm(0), TA(tree), ss(N) {} int get_subtree_wt(int v) { assert(v != cent); // cent から見て v 方向 if (tree.in_subtree(v, cent)) { return TA.prod_subtree(tree.jump(cent, v, 1)); } return wt_sm - TA.prod_subtree(cent); } int move_to(int v) { // 圧縮木上で cent から v に進む if (tree.in_subtree(v, cent)) { // v 方向にある重みの lca int a = tree.jump(cent, v, 1); int L = tree.LID[a], R = tree.RID[a]; L = ss.next(L), R = ss.prev(R - 1); int x = tree.V[L], y = tree.V[R]; return tree.lca(x, y); } int L = tree.LID[cent], R = tree.RID[cent]; int x = v; vc<int> I; I.eb(ss.next(0)); if (1 < L) I.eb(ss.prev(L - 1)); if (R < N - 1) I.eb(ss.next(R)); I.eb(ss.prev(N - 1)); for (auto&& idx: I) { if (idx == -1 || idx == N) continue; if (L <= idx && idx < R) continue; int y = tree.V[idx]; x = tree.meet(x, y, cent); } return x; } void add(int v) { ss.insert(tree.LID[v]), TA.add(v, 1), wt_sm++; if (v == cent) return; int wt = get_subtree_wt(v); if (max_subtree.se < wt) max_subtree = {tree.jump(cent, v, 1), wt}; if (2 * wt <= wt_sm) return; int k = wt; assert(wt_sm == 2 * k - 1); int to = move_to(v); max_subtree = {tree.jump(to, cent, 1), k - 1}; cent = to; } };