This documentation is automatically generated by online-judge-tools/verification-helper
#include "graph/count/count_P3_P4_P5.hpp"
#include "graph/count/count_C3_C4.hpp"
// 各 v に対して、v を始点とする P4, P5, P5 を数える(頂点数 3, 4, 5)
// simple graph を仮定している
template <typename GT>
tuple<vi, vi, vi> count_P3_P4_P5_pointwise(GT& G) {
static_assert(!GT::is_directed);
int N = G.N;
auto deg = G.deg_array();
auto [C3, C4] = count_C3_C4_pointwise(G);
vi P3(N), P4(N), P5(N);
FOR(v, N) {
for (auto&& e: G[v]) {
if (e.frm == e.to) continue;
P3[v] += deg[e.to] - 1;
}
}
FOR(v, N) {
for (auto&& e: G[v]) {
if (e.frm == e.to) continue;
P4[v] += P3[e.to] - (deg[v] - 1);
}
P4[v] -= C3[v] * 2;
}
FOR(v, N) {
for (auto&& e: G[v]) {
if (e.frm == e.to) continue;
P5[v] += P4[e.to];
}
P5[v] -= C4[v] * 2;
P5[v] -= C3[v] * 2 * (deg[v] - 3);
P5[v] -= P3[v] * (deg[v] - 1);
}
return {P3, P4, P5};
}
#line 2 "ds/hashmap.hpp"
// u64 -> Val
template <typename Val>
struct HashMap {
// n は入れたいものの個数で ok
HashMap(u32 n = 0) { build(n); }
void build(u32 n) {
u32 k = 8;
while (k < n * 2) k *= 2;
cap = k / 2, mask = k - 1;
key.resize(k), val.resize(k), used.assign(k, 0);
}
// size を保ったまま. size=0 にするときは build すること.
void clear() {
used.assign(len(used), 0);
cap = (mask + 1) / 2;
}
int size() { return len(used) / 2 - cap; }
int index(const u64& k) {
int i = 0;
for (i = hash(k); used[i] && key[i] != k; i = (i + 1) & mask) {}
return i;
}
Val& operator[](const u64& k) {
if (cap == 0) extend();
int i = index(k);
if (!used[i]) { used[i] = 1, key[i] = k, val[i] = Val{}, --cap; }
return val[i];
}
Val get(const u64& k, Val default_value) {
int i = index(k);
return (used[i] ? val[i] : default_value);
}
bool count(const u64& k) {
int i = index(k);
return used[i] && key[i] == k;
}
// f(key, val)
template <typename F>
void enumerate_all(F f) {
FOR(i, len(used)) if (used[i]) f(key[i], val[i]);
}
private:
u32 cap, mask;
vc<u64> key;
vc<Val> val;
vc<bool> used;
u64 hash(u64 x) {
static const u64 FIXED_RANDOM = std::chrono::steady_clock::now().time_since_epoch().count();
x += FIXED_RANDOM;
x = (x ^ (x >> 30)) * 0xbf58476d1ce4e5b9;
x = (x ^ (x >> 27)) * 0x94d049bb133111eb;
return (x ^ (x >> 31)) & mask;
}
void extend() {
vc<pair<u64, Val>> dat;
dat.reserve(len(used) / 2 - cap);
FOR(i, len(used)) {
if (used[i]) dat.eb(key[i], val[i]);
}
build(2 * len(dat));
for (auto& [a, b]: dat) (*this)[a] = b;
}
};
#line 3 "graph/base.hpp"
template <typename T>
struct Edge {
int frm, to;
T cost;
int id;
};
template <typename T = int, bool directed = false>
struct Graph {
static constexpr bool is_directed = directed;
int N, M;
using cost_type = T;
using edge_type = Edge<T>;
vector<edge_type> edges;
vector<int> indptr;
vector<edge_type> csr_edges;
vc<int> vc_deg, vc_indeg, vc_outdeg;
bool prepared;
class OutgoingEdges {
public:
OutgoingEdges(const Graph* G, int l, int r) : G(G), l(l), r(r) {}
const edge_type* begin() const {
if (l == r) { return 0; }
return &G->csr_edges[l];
}
const edge_type* end() const {
if (l == r) { return 0; }
return &G->csr_edges[r];
}
private:
const Graph* G;
int l, r;
};
bool is_prepared() { return prepared; }
Graph() : N(0), M(0), prepared(0) {}
Graph(int N) : N(N), M(0), prepared(0) {}
void build(int n) {
N = n, M = 0;
prepared = 0;
edges.clear();
indptr.clear();
csr_edges.clear();
vc_deg.clear();
vc_indeg.clear();
vc_outdeg.clear();
}
void add(int frm, int to, T cost = 1, int i = -1) {
assert(!prepared);
assert(0 <= frm && 0 <= to && to < N);
if (i == -1) i = M;
auto e = edge_type({frm, to, cost, i});
edges.eb(e);
++M;
}
#ifdef FASTIO
// wt, off
void read_tree(bool wt = false, int off = 1) { read_graph(N - 1, wt, off); }
void read_graph(int M, bool wt = false, int off = 1) {
for (int m = 0; m < M; ++m) {
INT(a, b);
a -= off, b -= off;
if (!wt) {
add(a, b);
} else {
T c;
read(c);
add(a, b, c);
}
}
build();
}
#endif
void build() {
assert(!prepared);
prepared = true;
indptr.assign(N + 1, 0);
for (auto&& e: edges) {
indptr[e.frm + 1]++;
if (!directed) indptr[e.to + 1]++;
}
for (int v = 0; v < N; ++v) { indptr[v + 1] += indptr[v]; }
auto counter = indptr;
csr_edges.resize(indptr.back() + 1);
for (auto&& e: edges) {
csr_edges[counter[e.frm]++] = e;
if (!directed) csr_edges[counter[e.to]++] = edge_type({e.to, e.frm, e.cost, e.id});
}
}
OutgoingEdges operator[](int v) const {
assert(prepared);
return {this, indptr[v], indptr[v + 1]};
}
vc<int> deg_array() {
if (vc_deg.empty()) calc_deg();
return vc_deg;
}
pair<vc<int>, vc<int>> deg_array_inout() {
if (vc_indeg.empty()) calc_deg_inout();
return {vc_indeg, vc_outdeg};
}
int deg(int v) {
if (vc_deg.empty()) calc_deg();
return vc_deg[v];
}
int in_deg(int v) {
if (vc_indeg.empty()) calc_deg_inout();
return vc_indeg[v];
}
int out_deg(int v) {
if (vc_outdeg.empty()) calc_deg_inout();
return vc_outdeg[v];
}
#ifdef FASTIO
void debug() {
#ifdef LOCAL
print("Graph");
if (!prepared) {
print("frm to cost id");
for (auto&& e: edges) print(e.frm, e.to, e.cost, e.id);
} else {
print("indptr", indptr);
print("frm to cost id");
FOR(v, N) for (auto&& e: (*this)[v]) print(e.frm, e.to, e.cost, e.id);
}
#endif
}
#endif
vc<int> new_idx;
vc<bool> used_e;
// G における頂点 V[i] が、新しいグラフで i になるようにする
// {G, es}
// sum(deg(v)) の計算量になっていて、
// 新しいグラフの n+m より大きい可能性があるので注意
Graph<T, directed> rearrange(vc<int> V, bool keep_eid = 0) {
if (len(new_idx) != N) new_idx.assign(N, -1);
int n = len(V);
FOR(i, n) new_idx[V[i]] = i;
Graph<T, directed> G(n);
vc<int> history;
FOR(i, n) {
for (auto&& e: (*this)[V[i]]) {
if (len(used_e) <= e.id) used_e.resize(e.id + 1);
if (used_e[e.id]) continue;
int a = e.frm, b = e.to;
if (new_idx[a] != -1 && new_idx[b] != -1) {
history.eb(e.id);
used_e[e.id] = 1;
int eid = (keep_eid ? e.id : -1);
G.add(new_idx[a], new_idx[b], e.cost, eid);
}
}
}
FOR(i, n) new_idx[V[i]] = -1;
for (auto&& eid: history) used_e[eid] = 0;
G.build();
return G;
}
Graph<T, true> to_directed_tree(int root = -1) {
if (root == -1) root = 0;
assert(!is_directed && prepared && M == N - 1);
Graph<T, true> G1(N);
vc<int> par(N, -1);
auto dfs = [&](auto& dfs, int v) -> void {
for (auto& e: (*this)[v]) {
if (e.to == par[v]) continue;
par[e.to] = v, dfs(dfs, e.to);
}
};
dfs(dfs, root);
for (auto& e: edges) {
int a = e.frm, b = e.to;
if (par[a] == b) swap(a, b);
assert(par[b] == a);
G1.add(a, b, e.cost);
}
G1.build();
return G1;
}
HashMap<int> MP_FOR_EID;
int get_eid(u64 a, u64 b) {
if (len(MP_FOR_EID) == 0) {
MP_FOR_EID.build(N - 1);
for (auto& e: edges) {
u64 a = e.frm, b = e.to;
u64 k = to_eid_key(a, b);
MP_FOR_EID[k] = e.id;
}
}
return MP_FOR_EID.get(to_eid_key(a, b), -1);
}
u64 to_eid_key(u64 a, u64 b) {
if (!directed && a > b) swap(a, b);
return N * a + b;
}
private:
void calc_deg() {
assert(vc_deg.empty());
vc_deg.resize(N);
for (auto&& e: edges) vc_deg[e.frm]++, vc_deg[e.to]++;
}
void calc_deg_inout() {
assert(vc_indeg.empty());
vc_indeg.resize(N);
vc_outdeg.resize(N);
for (auto&& e: edges) { vc_indeg[e.to]++, vc_outdeg[e.frm]++; }
}
};
#line 2 "graph/count/count_C3_C4.hpp"
// 各点に対してその点を含む C3, C4 を数える
// simple graph を仮定
template <typename GT>
pair<vi, vi> count_C3_C4_pointwise(GT &G) {
static_assert(!GT::is_directed);
int N = G.N;
auto deg = G.deg_array();
auto I = argsort(deg);
reverse(all(I));
vc<int> rk(N);
FOR(i, N) rk[I[i]] = i;
// 遷移先を降順に並べる
vvc<int> TO(N);
for (auto &&e: G.edges) {
int a = rk[e.frm], b = rk[e.to];
TO[a].eb(b), TO[b].eb(a);
}
FOR(v, N) { sort(all(TO[v])), reverse(all(TO[v])); }
vc<int> A(N);
vi C3(N), C4(N);
FOR(a, N) {
for (auto &b: TO[a]) TO[b].pop_back();
for (auto &b: TO[a]) {
for (auto &c: TO[b]) { C4[a] += A[c], C4[c] += A[c], A[c] += 1; }
}
for (auto &b: TO[a]) {
C3[a] += A[b], C3[b] += A[b] + A[b];
for (auto &c: TO[b]) { C4[b] += A[c] - 1; }
}
for (auto &b: TO[a]) {
for (auto &c: TO[b]) { A[c] = 0; }
}
}
for (auto &x: C3) x /= 2;
C3 = rearrange(C3, rk), C4 = rearrange(C4, rk);
return {C3, C4};
}
// (2e5,5e5) で 500 ms
// https://codeforces.com/gym/104053/problem/K
template <typename GT>
pair<ll, ll> count_C3_C4(GT &G) {
static_assert(!GT::is_directed);
int N = G.N;
ll x3 = 0, x4 = 0;
auto deg = G.deg_array();
auto I = argsort(deg);
reverse(all(I));
vc<int> rk(N);
FOR(i, N) rk[I[i]] = i;
// 遷移先を降順に並べる
vvc<int> TO(N);
for (auto &&e: G.edges) {
int a = rk[e.frm], b = rk[e.to];
if (a != b) TO[a].eb(b), TO[b].eb(a);
}
FOR(v, N) {
sort(all(TO[v]));
reverse(all(TO[v]));
}
vc<int> A(N);
FOR(a, N) {
for (auto &&b: TO[a]) TO[b].pop_back();
for (auto &&b: TO[a]) {
for (auto &&c: TO[b]) { x4 += A[c]++; }
}
for (auto &&b: TO[a]) { x3 += A[b]; }
for (auto &&b: TO[a]) {
for (auto &&c: TO[b]) { A[c] = 0; }
}
}
x3 /= 2;
return {x3, x4};
}
#line 2 "graph/count/count_P3_P4_P5.hpp"
// 各 v に対して、v を始点とする P4, P5, P5 を数える(頂点数 3, 4, 5)
// simple graph を仮定している
template <typename GT>
tuple<vi, vi, vi> count_P3_P4_P5_pointwise(GT& G) {
static_assert(!GT::is_directed);
int N = G.N;
auto deg = G.deg_array();
auto [C3, C4] = count_C3_C4_pointwise(G);
vi P3(N), P4(N), P5(N);
FOR(v, N) {
for (auto&& e: G[v]) {
if (e.frm == e.to) continue;
P3[v] += deg[e.to] - 1;
}
}
FOR(v, N) {
for (auto&& e: G[v]) {
if (e.frm == e.to) continue;
P4[v] += P3[e.to] - (deg[v] - 1);
}
P4[v] -= C3[v] * 2;
}
FOR(v, N) {
for (auto&& e: G[v]) {
if (e.frm == e.to) continue;
P5[v] += P4[e.to];
}
P5[v] -= C4[v] * 2;
P5[v] -= C3[v] * 2 * (deg[v] - 3);
P5[v] -= P3[v] * (deg[v] - 1);
}
return {P3, P4, P5};
}