This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub maspypy/library
#include "graph/bipartite_edge_coloring.hpp"
#include "graph/bipartite_vertex_coloring.hpp" #include "ds/unionfind/unionfind.hpp" #include "flow/bipartite.hpp" struct RegularBipartiteColoring { using P = pair<int, int>; int N, M; vc<P> edges; vvc<int> solve(int n, int k, vc<P> G) { N = n; M = len(G); edges = G; vc<int> A(M); iota(all(A), 0); return solve_inner(M / N, A); } vvc<int> solve_inner(int k, vc<int> A) { return (k % 2 == 0 ? solve_even(k, A) : solve_odd(k, A)); } vvc<int> solve_even(int k, vc<int> A) { assert(k % 2 == 0); if (k == 0) return {}; // 2^m <= k < 2^{m+1} int m = 0; while (1 << (m + 1) <= k) ++m; vvc<int> res; if (k != 1 << m) { auto [B, C] = split(k, A); auto dat = solve_inner(k / 2, C); FOR(j, k - (1 << m)) { res.eb(dat[j]); } FOR(j, k - (1 << m), len(dat)) { for (auto&& idx: dat[j]) B.eb(idx); } k = 1 << m; swap(A, B); } auto dfs = [&](auto& dfs, int K, vc<int> A) -> void { if (K == 1) { res.eb(A); return; } auto [B, C] = split(k, A); dfs(dfs, K / 2, B); dfs(dfs, K / 2, C); }; dfs(dfs, k, A); return res; } vvc<int> solve_odd(int k, vc<int> A) { assert(k % 2 == 1); if (k == 1) { return {A}; } vc<bool> match = matching(k, A); vc<int> B; B.reserve(len(A) - N); vc<int> es; FOR(i, len(A)) { if (match[i]) es.eb(A[i]); if (!match[i]) B.eb(A[i]); } vvc<int> res = solve_inner(k - 1, B); res.eb(es); return res; } vc<bool> matching(int k, vc<int> A) { Graph<bool, 0> G(N + N); vc<int> color(N + N); FOR(v, N) color[v] = 0; for (auto&& eid: A) { auto [a, b] = edges[eid]; G.add(a, b); } G.build(); BipartiteMatching<decltype(G)> BM(G); auto& match = BM.match; vc<bool> res(len(A)); FOR(i, len(A)) { auto idx = A[i]; auto [a, b] = edges[idx]; if (match[a] == b) { match[a] = -1; res[i] = 1; } } return res; } pair<vc<int>, vc<int>> split(int k, vc<int> A) { assert(k % 2 == 0); // 2 つの k/2 - regular に分割する。 int n = len(A); vc<bool> rest(n); vc<int> A0, A1; A0.reserve(n / 2), A1.reserve(n / 2); vvc<P> G(N + N); FOR(i, n) { rest[i] = 1; auto [a, b] = edges[A[i]]; G[a].eb(i, b); G[b].eb(i, a); } auto dfs = [&](auto& dfs, int v, int color) -> void { while (len(G[v])) { auto [i, to] = POP(G[v]); if (!rest[i]) continue; rest[i] = 0; if (color == 0) A0.eb(A[i]); if (color == 1) A1.eb(A[i]); dfs(dfs, to, 1 ^ color); } }; FOR(v, N) dfs(dfs, v, 0); return {A0, A1}; } }; template <typename GT> pair<int, vc<int>> bipartite_edge_coloring(GT& G) { auto vcolor = bipartite_vertex_coloring<GT>(G); auto deg = G.deg_array(); int D = MAX(deg); UnionFind uf(G.N); FOR(c, 2) { pqg<pair<int, int>> que; FOR(v, G.N) { if (vcolor[v] == c) que.emplace(deg[v], v); } while (len(que) > 1) { auto [d1, v1] = POP(que); auto [d2, v2] = POP(que); if (d1 + d2 > D) break; uf.merge(v1, v2); int r = uf[v1]; que.emplace(d1 + d2, r); } } vc<int> LV, RV; FOR(v, G.N) if (uf[v] == v) { if (vcolor[v] == 0) LV.eb(v); if (vcolor[v] == 1) RV.eb(v); } int X = max(len(LV), len(RV)); vc<int> degL(X), degR(X); vc<pair<int, int>> edges; for (auto&& e: G.edges) { int a = e.frm, b = e.to; a = uf[a], b = uf[b]; a = LB(LV, a); b = LB(RV, b); degL[a]++, degR[b]++; edges.eb(a, X + b); } int p = 0, q = 0; while (p < X && q < X) { if (degL[p] == D) { ++p; continue; } if (degR[q] == D) { ++q; continue; } edges.eb(p, X + q); degL[p]++, degR[q]++; } RegularBipartiteColoring RBC; vvc<int> res = RBC.solve(X, D, edges); vc<int> ecolor(len(edges)); FOR(i, len(res)) { for (auto&& j: res[i]) ecolor[j] = i; } ecolor.resize(G.M); return {D, ecolor}; }
#line 2 "graph/bipartite_vertex_coloring.hpp" #line 2 "graph/base.hpp" template <typename T> struct Edge { int frm, to; T cost; int id; }; template <typename T = int, bool directed = false> struct Graph { static constexpr bool is_directed = directed; int N, M; using cost_type = T; using edge_type = Edge<T>; vector<edge_type> edges; vector<int> indptr; vector<edge_type> csr_edges; vc<int> vc_deg, vc_indeg, vc_outdeg; bool prepared; class OutgoingEdges { public: OutgoingEdges(const Graph* G, int l, int r) : G(G), l(l), r(r) {} const edge_type* begin() const { if (l == r) { return 0; } return &G->csr_edges[l]; } const edge_type* end() const { if (l == r) { return 0; } return &G->csr_edges[r]; } private: const Graph* G; int l, r; }; bool is_prepared() { return prepared; } Graph() : N(0), M(0), prepared(0) {} Graph(int N) : N(N), M(0), prepared(0) {} void build(int n) { N = n, M = 0; prepared = 0; edges.clear(); indptr.clear(); csr_edges.clear(); vc_deg.clear(); vc_indeg.clear(); vc_outdeg.clear(); } void add(int frm, int to, T cost = 1, int i = -1) { assert(!prepared); assert(0 <= frm && 0 <= to && to < N); if (i == -1) i = M; auto e = edge_type({frm, to, cost, i}); edges.eb(e); ++M; } #ifdef FASTIO // wt, off void read_tree(bool wt = false, int off = 1) { read_graph(N - 1, wt, off); } void read_graph(int M, bool wt = false, int off = 1) { for (int m = 0; m < M; ++m) { INT(a, b); a -= off, b -= off; if (!wt) { add(a, b); } else { T c; read(c); add(a, b, c); } } build(); } #endif void build() { assert(!prepared); prepared = true; indptr.assign(N + 1, 0); for (auto&& e: edges) { indptr[e.frm + 1]++; if (!directed) indptr[e.to + 1]++; } for (int v = 0; v < N; ++v) { indptr[v + 1] += indptr[v]; } auto counter = indptr; csr_edges.resize(indptr.back() + 1); for (auto&& e: edges) { csr_edges[counter[e.frm]++] = e; if (!directed) csr_edges[counter[e.to]++] = edge_type({e.to, e.frm, e.cost, e.id}); } } OutgoingEdges operator[](int v) const { assert(prepared); return {this, indptr[v], indptr[v + 1]}; } vc<int> deg_array() { if (vc_deg.empty()) calc_deg(); return vc_deg; } pair<vc<int>, vc<int>> deg_array_inout() { if (vc_indeg.empty()) calc_deg_inout(); return {vc_indeg, vc_outdeg}; } int deg(int v) { if (vc_deg.empty()) calc_deg(); return vc_deg[v]; } int in_deg(int v) { if (vc_indeg.empty()) calc_deg_inout(); return vc_indeg[v]; } int out_deg(int v) { if (vc_outdeg.empty()) calc_deg_inout(); return vc_outdeg[v]; } #ifdef FASTIO void debug() { print("Graph"); if (!prepared) { print("frm to cost id"); for (auto&& e: edges) print(e.frm, e.to, e.cost, e.id); } else { print("indptr", indptr); print("frm to cost id"); FOR(v, N) for (auto&& e: (*this)[v]) print(e.frm, e.to, e.cost, e.id); } } #endif vc<int> new_idx; vc<bool> used_e; // G における頂点 V[i] が、新しいグラフで i になるようにする // {G, es} // sum(deg(v)) の計算量になっていて、 // 新しいグラフの n+m より大きい可能性があるので注意 Graph<T, directed> rearrange(vc<int> V, bool keep_eid = 0) { if (len(new_idx) != N) new_idx.assign(N, -1); int n = len(V); FOR(i, n) new_idx[V[i]] = i; Graph<T, directed> G(n); vc<int> history; FOR(i, n) { for (auto&& e: (*this)[V[i]]) { if (len(used_e) <= e.id) used_e.resize(e.id + 1); if (used_e[e.id]) continue; int a = e.frm, b = e.to; if (new_idx[a] != -1 && new_idx[b] != -1) { history.eb(e.id); used_e[e.id] = 1; int eid = (keep_eid ? e.id : -1); G.add(new_idx[a], new_idx[b], e.cost, eid); } } } FOR(i, n) new_idx[V[i]] = -1; for (auto&& eid: history) used_e[eid] = 0; G.build(); return G; } Graph<T, true> to_directed_tree(int root = -1) { if (root == -1) root = 0; assert(!is_directed && prepared && M == N - 1); Graph<T, true> G1(N); vc<int> par(N, -1); auto dfs = [&](auto& dfs, int v) -> void { for (auto& e: (*this)[v]) { if (e.to == par[v]) continue; par[e.to] = v, dfs(dfs, e.to); } }; dfs(dfs, root); for (auto& e: edges) { int a = e.frm, b = e.to; if (par[a] == b) swap(a, b); assert(par[b] == a); G1.add(a, b, e.cost); } G1.build(); return G1; } private: void calc_deg() { assert(vc_deg.empty()); vc_deg.resize(N); for (auto&& e: edges) vc_deg[e.frm]++, vc_deg[e.to]++; } void calc_deg_inout() { assert(vc_indeg.empty()); vc_indeg.resize(N); vc_outdeg.resize(N); for (auto&& e: edges) { vc_indeg[e.to]++, vc_outdeg[e.frm]++; } } }; #line 2 "ds/unionfind/unionfind.hpp" struct UnionFind { int n, n_comp; vc<int> dat; // par or (-size) UnionFind(int n = 0) { build(n); } void build(int m) { n = m, n_comp = m; dat.assign(n, -1); } void reset() { build(n); } int operator[](int x) { while (dat[x] >= 0) { int pp = dat[dat[x]]; if (pp < 0) { return dat[x]; } x = dat[x] = pp; } return x; } ll size(int x) { x = (*this)[x]; return -dat[x]; } bool merge(int x, int y) { x = (*this)[x], y = (*this)[y]; if (x == y) return false; if (-dat[x] < -dat[y]) swap(x, y); dat[x] += dat[y], dat[y] = x, n_comp--; return true; } vc<int> get_all() { vc<int> A(n); FOR(i, n) A[i] = (*this)[i]; return A; } }; #line 5 "graph/bipartite_vertex_coloring.hpp" // 二部グラフでなかった場合には empty template <typename GT> vc<int> bipartite_vertex_coloring(GT& G) { assert(!GT::is_directed); assert(G.is_prepared()); int n = G.N; UnionFind uf(2 * n); for (auto&& e: G.edges) { int u = e.frm, v = e.to; uf.merge(u + n, v), uf.merge(u, v + n); } vc<int> color(2 * n, -1); FOR(v, n) if (uf[v] == v && color[uf[v]] < 0) { color[uf[v]] = 0; color[uf[v + n]] = 1; } FOR(v, n) color[v] = color[uf[v]]; color.resize(n); FOR(v, n) if (uf[v] == uf[v + n]) return {}; return color; } #line 3 "graph/strongly_connected_component.hpp" template <typename GT> pair<int, vc<int>> strongly_connected_component(GT& G) { static_assert(GT::is_directed); assert(G.is_prepared()); int N = G.N; int C = 0; vc<int> comp(N), low(N), ord(N, -1), path; int now = 0; auto dfs = [&](auto& dfs, int v) -> void { low[v] = ord[v] = now++; path.eb(v); for (auto&& [frm, to, cost, id]: G[v]) { if (ord[to] == -1) { dfs(dfs, to), chmin(low[v], low[to]); } else { chmin(low[v], ord[to]); } } if (low[v] == ord[v]) { while (1) { int u = POP(path); ord[u] = N, comp[u] = C; if (u == v) break; } ++C; } }; FOR(v, N) { if (ord[v] == -1) dfs(dfs, v); } FOR(v, N) comp[v] = C - 1 - comp[v]; return {C, comp}; } template <typename GT> Graph<int, 1> scc_dag(GT& G, int C, vc<int>& comp) { Graph<int, 1> DAG(C); vvc<int> edges(C); for (auto&& e: G.edges) { int x = comp[e.frm], y = comp[e.to]; if (x == y) continue; edges[x].eb(y); } FOR(c, C) { UNIQUE(edges[c]); for (auto&& to: edges[c]) DAG.add(c, to); } DAG.build(); return DAG; } #line 4 "flow/bipartite.hpp" template <typename GT> struct BipartiteMatching { int N; GT& G; vc<int> color; vc<int> dist, match; vc<int> vis; BipartiteMatching(GT& G) : N(G.N), G(G), dist(G.N, -1), match(G.N, -1) { color = bipartite_vertex_coloring(G); if (N > 0) assert(!color.empty()); while (1) { bfs(); vis.assign(N, false); int flow = 0; FOR(v, N) if (!color[v] && match[v] == -1 && dfs(v))++ flow; if (!flow) break; } } BipartiteMatching(GT& G, vc<int> color) : N(G.N), G(G), color(color), dist(G.N, -1), match(G.N, -1) { while (1) { bfs(); vis.assign(N, false); int flow = 0; FOR(v, N) if (!color[v] && match[v] == -1 && dfs(v))++ flow; if (!flow) break; } } void bfs() { dist.assign(N, -1); queue<int> que; FOR(v, N) if (!color[v] && match[v] == -1) que.emplace(v), dist[v] = 0; while (!que.empty()) { int v = que.front(); que.pop(); for (auto&& e: G[v]) { dist[e.to] = 0; int w = match[e.to]; if (w != -1 && dist[w] == -1) dist[w] = dist[v] + 1, que.emplace(w); } } } bool dfs(int v) { vis[v] = 1; for (auto&& e: G[v]) { int w = match[e.to]; if (w == -1 || (!vis[w] && dist[w] == dist[v] + 1 && dfs(w))) { match[e.to] = v, match[v] = e.to; return true; } } return false; } vc<pair<int, int>> matching() { vc<pair<int, int>> res; FOR(v, N) if (v < match[v]) res.eb(v, match[v]); return res; } vc<int> vertex_cover() { vc<int> res; FOR(v, N) if (color[v] ^ (dist[v] == -1)) { res.eb(v); } return res; } vc<int> independent_set() { vc<int> res; FOR(v, N) if (!(color[v] ^ (dist[v] == -1))) { res.eb(v); } return res; } vc<int> edge_cover() { vc<bool> done(N); vc<int> res; for (auto&& e: G.edges) { if (done[e.frm] || done[e.to]) continue; if (match[e.frm] == e.to) { res.eb(e.id); done[e.frm] = done[e.to] = 1; } } for (auto&& e: G.edges) { if (!done[e.frm]) { res.eb(e.id); done[e.frm] = 1; } if (!done[e.to]) { res.eb(e.id); done[e.to] = 1; } } sort(all(res)); return res; } /* Dulmage–Mendelsohn decomposition https://en.wikipedia.org/wiki/Dulmage%E2%80%93Mendelsohn_decomposition http://www.misojiro.t.u-tokyo.ac.jp/~murota/lect-ouyousurigaku/dm050410.pdf https://hitonanode.github.io/cplib-cpp/graph/dulmage_mendelsohn_decomposition.hpp.html - 最大マッチングとしてありうる iff 同じ W を持つ - 辺 uv が必ず使われる:同じ W を持つ辺が唯一 - color=0 から 1 への辺:W[l] <= W[r] - color=0 の点が必ず使われる:W=1,2,...,K - color=1 の点が必ず使われる:W=0,1,...,K-1 */ pair<int, vc<int>> DM_decomposition() { // 非飽和点からの探索 vc<int> W(N, -1); vc<int> que; auto add = [&](int v, int x) -> void { if (W[v] == -1) { W[v] = x; que.eb(v); } }; FOR(v, N) if (match[v] == -1 && color[v] == 0) add(v, 0); FOR(v, N) if (match[v] == -1 && color[v] == 1) add(v, infty<int>); while (len(que)) { auto v = POP(que); if (match[v] != -1) add(match[v], W[v]); if (color[v] == 0 && W[v] == 0) { for (auto&& e: G[v]) { add(e.to, W[v]); } } if (color[v] == 1 && W[v] == infty<int>) { for (auto&& e: G[v]) { add(e.to, W[v]); } } } // 残った点からなるグラフを作って強連結成分分解 vc<int> V; FOR(v, N) if (W[v] == -1) V.eb(v); int n = len(V); Graph<bool, 1> DG(n); FOR(i, n) { int v = V[i]; if (match[v] != -1) { int j = LB(V, match[v]); DG.add(i, j); } if (color[v] == 0) { for (auto&& e: G[v]) { if (W[e.to] != -1 || e.to == match[v]) continue; int j = LB(V, e.to); DG.add(i, j); } } } DG.build(); auto [K, comp] = strongly_connected_component(DG); K += 1; // 答 FOR(i, n) { W[V[i]] = 1 + comp[i]; } FOR(v, N) if (W[v] == infty<int>) W[v] = K; return {K, W}; } #ifdef FASTIO void debug() { print("match", match); print("min vertex covor", vertex_cover()); print("max indep set", independent_set()); print("min edge cover", edge_cover()); } #endif }; #line 4 "graph/bipartite_edge_coloring.hpp" struct RegularBipartiteColoring { using P = pair<int, int>; int N, M; vc<P> edges; vvc<int> solve(int n, int k, vc<P> G) { N = n; M = len(G); edges = G; vc<int> A(M); iota(all(A), 0); return solve_inner(M / N, A); } vvc<int> solve_inner(int k, vc<int> A) { return (k % 2 == 0 ? solve_even(k, A) : solve_odd(k, A)); } vvc<int> solve_even(int k, vc<int> A) { assert(k % 2 == 0); if (k == 0) return {}; // 2^m <= k < 2^{m+1} int m = 0; while (1 << (m + 1) <= k) ++m; vvc<int> res; if (k != 1 << m) { auto [B, C] = split(k, A); auto dat = solve_inner(k / 2, C); FOR(j, k - (1 << m)) { res.eb(dat[j]); } FOR(j, k - (1 << m), len(dat)) { for (auto&& idx: dat[j]) B.eb(idx); } k = 1 << m; swap(A, B); } auto dfs = [&](auto& dfs, int K, vc<int> A) -> void { if (K == 1) { res.eb(A); return; } auto [B, C] = split(k, A); dfs(dfs, K / 2, B); dfs(dfs, K / 2, C); }; dfs(dfs, k, A); return res; } vvc<int> solve_odd(int k, vc<int> A) { assert(k % 2 == 1); if (k == 1) { return {A}; } vc<bool> match = matching(k, A); vc<int> B; B.reserve(len(A) - N); vc<int> es; FOR(i, len(A)) { if (match[i]) es.eb(A[i]); if (!match[i]) B.eb(A[i]); } vvc<int> res = solve_inner(k - 1, B); res.eb(es); return res; } vc<bool> matching(int k, vc<int> A) { Graph<bool, 0> G(N + N); vc<int> color(N + N); FOR(v, N) color[v] = 0; for (auto&& eid: A) { auto [a, b] = edges[eid]; G.add(a, b); } G.build(); BipartiteMatching<decltype(G)> BM(G); auto& match = BM.match; vc<bool> res(len(A)); FOR(i, len(A)) { auto idx = A[i]; auto [a, b] = edges[idx]; if (match[a] == b) { match[a] = -1; res[i] = 1; } } return res; } pair<vc<int>, vc<int>> split(int k, vc<int> A) { assert(k % 2 == 0); // 2 つの k/2 - regular に分割する。 int n = len(A); vc<bool> rest(n); vc<int> A0, A1; A0.reserve(n / 2), A1.reserve(n / 2); vvc<P> G(N + N); FOR(i, n) { rest[i] = 1; auto [a, b] = edges[A[i]]; G[a].eb(i, b); G[b].eb(i, a); } auto dfs = [&](auto& dfs, int v, int color) -> void { while (len(G[v])) { auto [i, to] = POP(G[v]); if (!rest[i]) continue; rest[i] = 0; if (color == 0) A0.eb(A[i]); if (color == 1) A1.eb(A[i]); dfs(dfs, to, 1 ^ color); } }; FOR(v, N) dfs(dfs, v, 0); return {A0, A1}; } }; template <typename GT> pair<int, vc<int>> bipartite_edge_coloring(GT& G) { auto vcolor = bipartite_vertex_coloring<GT>(G); auto deg = G.deg_array(); int D = MAX(deg); UnionFind uf(G.N); FOR(c, 2) { pqg<pair<int, int>> que; FOR(v, G.N) { if (vcolor[v] == c) que.emplace(deg[v], v); } while (len(que) > 1) { auto [d1, v1] = POP(que); auto [d2, v2] = POP(que); if (d1 + d2 > D) break; uf.merge(v1, v2); int r = uf[v1]; que.emplace(d1 + d2, r); } } vc<int> LV, RV; FOR(v, G.N) if (uf[v] == v) { if (vcolor[v] == 0) LV.eb(v); if (vcolor[v] == 1) RV.eb(v); } int X = max(len(LV), len(RV)); vc<int> degL(X), degR(X); vc<pair<int, int>> edges; for (auto&& e: G.edges) { int a = e.frm, b = e.to; a = uf[a], b = uf[b]; a = LB(LV, a); b = LB(RV, b); degL[a]++, degR[b]++; edges.eb(a, X + b); } int p = 0, q = 0; while (p < X && q < X) { if (degL[p] == D) { ++p; continue; } if (degR[q] == D) { ++q; continue; } edges.eb(p, X + q); degL[p]++, degR[q]++; } RegularBipartiteColoring RBC; vvc<int> res = RBC.solve(X, D, edges); vc<int> ecolor(len(edges)); FOR(i, len(res)) { for (auto&& j: res[i]) ecolor[j] = i; } ecolor.resize(G.M); return {D, ecolor}; }