This documentation is automatically generated by online-judge-tools/verification-helper
#include "graph/bipartite_balanced_edge_coloring.hpp"
#include "graph/bipartite_edge_coloring.hpp"
// 辺を K 色で塗る. 各点のまわりで色が均等(max-min <= 1)にせよ.
// return : color[eid].
// https://codeforces.com/contest/212/problem/A
vc<int> bipartite_balanced_edge_coloring(Graph<int, 0> G, int K) {
int N = G.N, M = G.M;
vc<int> A, B;
vc<int> cnt(N);
vc<int> now(N);
int nxt = 0;
auto get = [&](int v) -> int {
if (cnt[v] % K == 0) { now[v] = nxt++; }
cnt[v]++;
return now[v];
};
for (auto& e: G.edges) {
int a = e.frm, b = e.to;
a = get(a), b = get(b);
A.eb(a), B.eb(b);
}
Graph<int, 0> H(nxt);
FOR(i, M) H.add(A[i], B[i]);
H.build();
return bipartite_edge_coloring(H).se;
}
#line 2 "graph/bipartite_vertex_coloring.hpp"
#line 2 "ds/hashmap.hpp"
// u64 -> Val
template <typename Val>
struct HashMap {
// n は入れたいものの個数で ok
HashMap(u32 n = 0) { build(n); }
void build(u32 n) {
u32 k = 8;
while (k < n * 2) k *= 2;
cap = k / 2, mask = k - 1;
key.resize(k), val.resize(k), used.assign(k, 0);
}
// size を保ったまま. size=0 にするときは build すること.
void clear() {
used.assign(len(used), 0);
cap = (mask + 1) / 2;
}
int size() { return len(used) / 2 - cap; }
int index(const u64& k) {
int i = 0;
for (i = hash(k); used[i] && key[i] != k; i = (i + 1) & mask) {}
return i;
}
Val& operator[](const u64& k) {
if (cap == 0) extend();
int i = index(k);
if (!used[i]) { used[i] = 1, key[i] = k, val[i] = Val{}, --cap; }
return val[i];
}
Val get(const u64& k, Val default_value) {
int i = index(k);
return (used[i] ? val[i] : default_value);
}
bool count(const u64& k) {
int i = index(k);
return used[i] && key[i] == k;
}
// f(key, val)
template <typename F>
void enumerate_all(F f) {
FOR(i, len(used)) if (used[i]) f(key[i], val[i]);
}
private:
u32 cap, mask;
vc<u64> key;
vc<Val> val;
vc<bool> used;
u64 hash(u64 x) {
static const u64 FIXED_RANDOM = std::chrono::steady_clock::now().time_since_epoch().count();
x += FIXED_RANDOM;
x = (x ^ (x >> 30)) * 0xbf58476d1ce4e5b9;
x = (x ^ (x >> 27)) * 0x94d049bb133111eb;
return (x ^ (x >> 31)) & mask;
}
void extend() {
vc<pair<u64, Val>> dat;
dat.reserve(len(used) / 2 - cap);
FOR(i, len(used)) {
if (used[i]) dat.eb(key[i], val[i]);
}
build(2 * len(dat));
for (auto& [a, b]: dat) (*this)[a] = b;
}
};
#line 3 "graph/base.hpp"
template <typename T>
struct Edge {
int frm, to;
T cost;
int id;
};
template <typename T = int, bool directed = false>
struct Graph {
static constexpr bool is_directed = directed;
int N, M;
using cost_type = T;
using edge_type = Edge<T>;
vector<edge_type> edges;
vector<int> indptr;
vector<edge_type> csr_edges;
vc<int> vc_deg, vc_indeg, vc_outdeg;
bool prepared;
class OutgoingEdges {
public:
OutgoingEdges(const Graph* G, int l, int r) : G(G), l(l), r(r) {}
const edge_type* begin() const {
if (l == r) { return 0; }
return &G->csr_edges[l];
}
const edge_type* end() const {
if (l == r) { return 0; }
return &G->csr_edges[r];
}
private:
const Graph* G;
int l, r;
};
bool is_prepared() { return prepared; }
Graph() : N(0), M(0), prepared(0) {}
Graph(int N) : N(N), M(0), prepared(0) {}
void build(int n) {
N = n, M = 0;
prepared = 0;
edges.clear();
indptr.clear();
csr_edges.clear();
vc_deg.clear();
vc_indeg.clear();
vc_outdeg.clear();
}
void add(int frm, int to, T cost = 1, int i = -1) {
assert(!prepared);
assert(0 <= frm && 0 <= to && to < N);
if (i == -1) i = M;
auto e = edge_type({frm, to, cost, i});
edges.eb(e);
++M;
}
#ifdef FASTIO
// wt, off
void read_tree(bool wt = false, int off = 1) { read_graph(N - 1, wt, off); }
void read_graph(int M, bool wt = false, int off = 1) {
for (int m = 0; m < M; ++m) {
INT(a, b);
a -= off, b -= off;
if (!wt) {
add(a, b);
} else {
T c;
read(c);
add(a, b, c);
}
}
build();
}
#endif
void build() {
assert(!prepared);
prepared = true;
indptr.assign(N + 1, 0);
for (auto&& e: edges) {
indptr[e.frm + 1]++;
if (!directed) indptr[e.to + 1]++;
}
for (int v = 0; v < N; ++v) { indptr[v + 1] += indptr[v]; }
auto counter = indptr;
csr_edges.resize(indptr.back() + 1);
for (auto&& e: edges) {
csr_edges[counter[e.frm]++] = e;
if (!directed) csr_edges[counter[e.to]++] = edge_type({e.to, e.frm, e.cost, e.id});
}
}
OutgoingEdges operator[](int v) const {
assert(prepared);
return {this, indptr[v], indptr[v + 1]};
}
vc<int> deg_array() {
if (vc_deg.empty()) calc_deg();
return vc_deg;
}
pair<vc<int>, vc<int>> deg_array_inout() {
if (vc_indeg.empty()) calc_deg_inout();
return {vc_indeg, vc_outdeg};
}
int deg(int v) {
if (vc_deg.empty()) calc_deg();
return vc_deg[v];
}
int in_deg(int v) {
if (vc_indeg.empty()) calc_deg_inout();
return vc_indeg[v];
}
int out_deg(int v) {
if (vc_outdeg.empty()) calc_deg_inout();
return vc_outdeg[v];
}
#ifdef FASTIO
void debug() {
print("Graph");
if (!prepared) {
print("frm to cost id");
for (auto&& e: edges) print(e.frm, e.to, e.cost, e.id);
} else {
print("indptr", indptr);
print("frm to cost id");
FOR(v, N) for (auto&& e: (*this)[v]) print(e.frm, e.to, e.cost, e.id);
}
}
#endif
vc<int> new_idx;
vc<bool> used_e;
// G における頂点 V[i] が、新しいグラフで i になるようにする
// {G, es}
// sum(deg(v)) の計算量になっていて、
// 新しいグラフの n+m より大きい可能性があるので注意
Graph<T, directed> rearrange(vc<int> V, bool keep_eid = 0) {
if (len(new_idx) != N) new_idx.assign(N, -1);
int n = len(V);
FOR(i, n) new_idx[V[i]] = i;
Graph<T, directed> G(n);
vc<int> history;
FOR(i, n) {
for (auto&& e: (*this)[V[i]]) {
if (len(used_e) <= e.id) used_e.resize(e.id + 1);
if (used_e[e.id]) continue;
int a = e.frm, b = e.to;
if (new_idx[a] != -1 && new_idx[b] != -1) {
history.eb(e.id);
used_e[e.id] = 1;
int eid = (keep_eid ? e.id : -1);
G.add(new_idx[a], new_idx[b], e.cost, eid);
}
}
}
FOR(i, n) new_idx[V[i]] = -1;
for (auto&& eid: history) used_e[eid] = 0;
G.build();
return G;
}
Graph<T, true> to_directed_tree(int root = -1) {
if (root == -1) root = 0;
assert(!is_directed && prepared && M == N - 1);
Graph<T, true> G1(N);
vc<int> par(N, -1);
auto dfs = [&](auto& dfs, int v) -> void {
for (auto& e: (*this)[v]) {
if (e.to == par[v]) continue;
par[e.to] = v, dfs(dfs, e.to);
}
};
dfs(dfs, root);
for (auto& e: edges) {
int a = e.frm, b = e.to;
if (par[a] == b) swap(a, b);
assert(par[b] == a);
G1.add(a, b, e.cost);
}
G1.build();
return G1;
}
HashMap<int> MP_FOR_EID;
int get_eid(u64 a, u64 b) {
if (len(MP_FOR_EID) == 0) {
MP_FOR_EID.build(N - 1);
for (auto& e: edges) {
u64 a = e.frm, b = e.to;
u64 k = to_eid_key(a, b);
MP_FOR_EID[k] = e.id;
}
}
return MP_FOR_EID.get(to_eid_key(a, b), -1);
}
u64 to_eid_key(u64 a, u64 b) {
if (!directed && a > b) swap(a, b);
return N * a + b;
}
private:
void calc_deg() {
assert(vc_deg.empty());
vc_deg.resize(N);
for (auto&& e: edges) vc_deg[e.frm]++, vc_deg[e.to]++;
}
void calc_deg_inout() {
assert(vc_indeg.empty());
vc_indeg.resize(N);
vc_outdeg.resize(N);
for (auto&& e: edges) { vc_indeg[e.to]++, vc_outdeg[e.frm]++; }
}
};
#line 2 "ds/unionfind/unionfind.hpp"
struct UnionFind {
int n, n_comp;
vc<int> dat; // par or (-size)
UnionFind(int n = 0) { build(n); }
void build(int m) {
n = m, n_comp = m;
dat.assign(n, -1);
}
void reset() { build(n); }
int operator[](int x) {
while (dat[x] >= 0) {
int pp = dat[dat[x]];
if (pp < 0) { return dat[x]; }
x = dat[x] = pp;
}
return x;
}
ll size(int x) {
x = (*this)[x];
return -dat[x];
}
bool merge(int x, int y) {
x = (*this)[x], y = (*this)[y];
if (x == y) return false;
if (-dat[x] < -dat[y]) swap(x, y);
dat[x] += dat[y], dat[y] = x, n_comp--;
return true;
}
vc<int> get_all() {
vc<int> A(n);
FOR(i, n) A[i] = (*this)[i];
return A;
}
};
#line 5 "graph/bipartite_vertex_coloring.hpp"
// 二部グラフでなかった場合には empty
template <typename GT>
vc<int> bipartite_vertex_coloring(GT& G) {
assert(!GT::is_directed);
assert(G.is_prepared());
int n = G.N;
UnionFind uf(2 * n);
for (auto&& e: G.edges) {
int u = e.frm, v = e.to;
uf.merge(u + n, v), uf.merge(u, v + n);
}
vc<int> color(2 * n, -1);
FOR(v, n) if (uf[v] == v && color[uf[v]] < 0) {
color[uf[v]] = 0;
color[uf[v + n]] = 1;
}
FOR(v, n) color[v] = color[uf[v]];
color.resize(n);
FOR(v, n) if (uf[v] == uf[v + n]) return {};
return color;
}
#line 3 "graph/strongly_connected_component.hpp"
template <typename GT>
pair<int, vc<int>> strongly_connected_component(GT& G) {
static_assert(GT::is_directed);
assert(G.is_prepared());
int N = G.N;
int C = 0;
vc<int> comp(N), low(N), ord(N, -1), path;
int now = 0;
auto dfs = [&](auto& dfs, int v) -> void {
low[v] = ord[v] = now++;
path.eb(v);
for (auto&& [frm, to, cost, id]: G[v]) {
if (ord[to] == -1) {
dfs(dfs, to), chmin(low[v], low[to]);
} else {
chmin(low[v], ord[to]);
}
}
if (low[v] == ord[v]) {
while (1) {
int u = POP(path);
ord[u] = N, comp[u] = C;
if (u == v) break;
}
++C;
}
};
FOR(v, N) {
if (ord[v] == -1) dfs(dfs, v);
}
FOR(v, N) comp[v] = C - 1 - comp[v];
return {C, comp};
}
template <typename GT>
Graph<int, 1> scc_dag(GT& G, int C, vc<int>& comp) {
Graph<int, 1> DAG(C);
vvc<int> edges(C);
for (auto&& e: G.edges) {
int x = comp[e.frm], y = comp[e.to];
if (x == y) continue;
edges[x].eb(y);
}
FOR(c, C) {
UNIQUE(edges[c]);
for (auto&& to: edges[c]) DAG.add(c, to);
}
DAG.build();
return DAG;
}
#line 4 "flow/bipartite.hpp"
template <typename GT>
struct BipartiteMatching {
int N;
GT& G;
vc<int> color;
vc<int> dist, match;
vc<int> vis;
BipartiteMatching(GT& G) : N(G.N), G(G), dist(G.N, -1), match(G.N, -1) {
color = bipartite_vertex_coloring(G);
if (N > 0) assert(!color.empty());
while (1) {
bfs();
vis.assign(N, false);
int flow = 0;
FOR(v, N) if (!color[v] && match[v] == -1 && dfs(v))++ flow;
if (!flow) break;
}
}
BipartiteMatching(GT& G, vc<int> color)
: N(G.N), G(G), color(color), dist(G.N, -1), match(G.N, -1) {
while (1) {
bfs();
vis.assign(N, false);
int flow = 0;
FOR(v, N) if (!color[v] && match[v] == -1 && dfs(v))++ flow;
if (!flow) break;
}
}
void bfs() {
dist.assign(N, -1);
queue<int> que;
FOR(v, N) if (!color[v] && match[v] == -1) que.emplace(v), dist[v] = 0;
while (!que.empty()) {
int v = que.front();
que.pop();
for (auto&& e: G[v]) {
dist[e.to] = 0;
int w = match[e.to];
if (w != -1 && dist[w] == -1) dist[w] = dist[v] + 1, que.emplace(w);
}
}
}
bool dfs(int v) {
vis[v] = 1;
for (auto&& e: G[v]) {
int w = match[e.to];
if (w == -1 || (!vis[w] && dist[w] == dist[v] + 1 && dfs(w))) {
match[e.to] = v, match[v] = e.to;
return true;
}
}
return false;
}
vc<pair<int, int>> matching() {
vc<pair<int, int>> res;
FOR(v, N) if (v < match[v]) res.eb(v, match[v]);
return res;
}
vc<int> vertex_cover() {
vc<int> res;
FOR(v, N) if (color[v] ^ (dist[v] == -1)) { res.eb(v); }
return res;
}
vc<int> independent_set() {
vc<int> res;
FOR(v, N) if (!(color[v] ^ (dist[v] == -1))) { res.eb(v); }
return res;
}
vc<int> edge_cover() {
vc<bool> done(N);
vc<int> res;
for (auto&& e: G.edges) {
if (done[e.frm] || done[e.to]) continue;
if (match[e.frm] == e.to) {
res.eb(e.id);
done[e.frm] = done[e.to] = 1;
}
}
for (auto&& e: G.edges) {
if (!done[e.frm]) {
res.eb(e.id);
done[e.frm] = 1;
}
if (!done[e.to]) {
res.eb(e.id);
done[e.to] = 1;
}
}
sort(all(res));
return res;
}
/* Dulmage–Mendelsohn decomposition
https://en.wikipedia.org/wiki/Dulmage%E2%80%93Mendelsohn_decomposition
http://www.misojiro.t.u-tokyo.ac.jp/~murota/lect-ouyousurigaku/dm050410.pdf
https://hitonanode.github.io/cplib-cpp/graph/dulmage_mendelsohn_decomposition.hpp.html
- 最大マッチングとしてありうる iff 同じ W を持つ
- 辺 uv が必ず使われる:同じ W を持つ辺が唯一
- color=0 から 1 への辺:W[l] <= W[r]
- color=0 の点が必ず使われる:W=1,2,...,K
- color=1 の点が必ず使われる:W=0,1,...,K-1
*/
pair<int, vc<int>> DM_decomposition() {
// 非飽和点からの探索
vc<int> W(N, -1);
vc<int> que;
auto add = [&](int v, int x) -> void {
if (W[v] == -1) {
W[v] = x;
que.eb(v);
}
};
FOR(v, N) if (match[v] == -1 && color[v] == 0) add(v, 0);
FOR(v, N) if (match[v] == -1 && color[v] == 1) add(v, infty<int>);
while (len(que)) {
auto v = POP(que);
if (match[v] != -1) add(match[v], W[v]);
if (color[v] == 0 && W[v] == 0) {
for (auto&& e: G[v]) { add(e.to, W[v]); }
}
if (color[v] == 1 && W[v] == infty<int>) {
for (auto&& e: G[v]) { add(e.to, W[v]); }
}
}
// 残った点からなるグラフを作って強連結成分分解
vc<int> V;
FOR(v, N) if (W[v] == -1) V.eb(v);
int n = len(V);
Graph<bool, 1> DG(n);
FOR(i, n) {
int v = V[i];
if (match[v] != -1) {
int j = LB(V, match[v]);
DG.add(i, j);
}
if (color[v] == 0) {
for (auto&& e: G[v]) {
if (W[e.to] != -1 || e.to == match[v]) continue;
int j = LB(V, e.to);
DG.add(i, j);
}
}
}
DG.build();
auto [K, comp] = strongly_connected_component(DG);
K += 1;
// 答
FOR(i, n) { W[V[i]] = 1 + comp[i]; }
FOR(v, N) if (W[v] == infty<int>) W[v] = K;
return {K, W};
}
#ifdef FASTIO
void debug() {
print("match", match);
print("min vertex covor", vertex_cover());
print("max indep set", independent_set());
print("min edge cover", edge_cover());
}
#endif
};
#line 4 "graph/bipartite_edge_coloring.hpp"
struct RegularBipartiteColoring {
using P = pair<int, int>;
int N, M;
vc<P> edges;
vvc<int> solve(int n, int k, vc<P> G) {
N = n;
M = len(G);
edges = G;
vc<int> A(M);
iota(all(A), 0);
return solve_inner(M / N, A);
}
vvc<int> solve_inner(int k, vc<int> A) { return (k % 2 == 0 ? solve_even(k, A) : solve_odd(k, A)); }
vvc<int> solve_even(int k, vc<int> A) {
assert(k % 2 == 0);
if (k == 0) return {};
// 2^m <= k < 2^{m+1}
int m = 0;
while (1 << (m + 1) <= k) ++m;
vvc<int> res;
if (k != 1 << m) {
auto [B, C] = split(k, A);
auto dat = solve_inner(k / 2, C);
FOR(j, k - (1 << m)) { res.eb(dat[j]); }
FOR(j, k - (1 << m), len(dat)) {
for (auto&& idx: dat[j]) B.eb(idx);
}
k = 1 << m;
swap(A, B);
}
auto dfs = [&](auto& dfs, int K, vc<int> A) -> void {
if (K == 1) {
res.eb(A);
return;
}
auto [B, C] = split(k, A);
dfs(dfs, K / 2, B);
dfs(dfs, K / 2, C);
};
dfs(dfs, k, A);
return res;
}
vvc<int> solve_odd(int k, vc<int> A) {
assert(k % 2 == 1);
if (k == 1) { return {A}; }
vc<bool> match = matching(k, A);
vc<int> B;
B.reserve(len(A) - N);
vc<int> es;
FOR(i, len(A)) {
if (match[i]) es.eb(A[i]);
if (!match[i]) B.eb(A[i]);
}
vvc<int> res = solve_inner(k - 1, B);
res.eb(es);
return res;
}
vc<bool> matching(int k, vc<int> A) {
Graph<bool, 0> G(N + N);
vc<int> color(N + N);
FOR(v, N) color[v] = 0;
for (auto&& eid: A) {
auto [a, b] = edges[eid];
G.add(a, b);
}
G.build();
BipartiteMatching<decltype(G)> BM(G);
auto& match = BM.match;
vc<bool> res(len(A));
FOR(i, len(A)) {
auto idx = A[i];
auto [a, b] = edges[idx];
if (match[a] == b) {
match[a] = -1;
res[i] = 1;
}
}
return res;
}
pair<vc<int>, vc<int>> split(int k, vc<int> A) {
assert(k % 2 == 0);
// 2 つの k/2 - regular に分割する。
int n = len(A);
vc<bool> rest(n);
vc<int> A0, A1;
A0.reserve(n / 2), A1.reserve(n / 2);
vvc<P> G(N + N);
FOR(i, n) {
rest[i] = 1;
auto [a, b] = edges[A[i]];
G[a].eb(i, b);
G[b].eb(i, a);
}
auto dfs = [&](auto& dfs, int v, int color) -> void {
while (len(G[v])) {
auto [i, to] = POP(G[v]);
if (!rest[i]) continue;
rest[i] = 0;
if (color == 0) A0.eb(A[i]);
if (color == 1) A1.eb(A[i]);
dfs(dfs, to, 1 ^ color);
}
};
FOR(v, N) dfs(dfs, v, 0);
return {A0, A1};
}
};
template <typename GT>
pair<int, vc<int>> bipartite_edge_coloring(GT& G) {
if (G.M == 0) { return {0, {}}; }
auto vcolor = bipartite_vertex_coloring<GT>(G);
auto deg = G.deg_array();
int D = MAX(deg);
UnionFind uf(G.N);
FOR(c, 2) {
pqg<pair<int, int>> que;
FOR(v, G.N) {
if (vcolor[v] == c) que.emplace(deg[v], v);
}
while (len(que) > 1) {
auto [d1, v1] = POP(que);
auto [d2, v2] = POP(que);
if (d1 + d2 > D) break;
uf.merge(v1, v2);
int r = uf[v1];
que.emplace(d1 + d2, r);
}
}
vc<int> LV, RV;
FOR(v, G.N) if (uf[v] == v) {
if (vcolor[v] == 0) LV.eb(v);
if (vcolor[v] == 1) RV.eb(v);
}
int X = max(len(LV), len(RV));
vc<int> degL(X), degR(X);
vc<pair<int, int>> edges;
for (auto&& e: G.edges) {
int a = e.frm, b = e.to;
a = uf[a], b = uf[b];
a = LB(LV, a);
b = LB(RV, b);
degL[a]++, degR[b]++;
edges.eb(a, X + b);
}
int p = 0, q = 0;
while (p < X && q < X) {
if (degL[p] == D) {
++p;
continue;
}
if (degR[q] == D) {
++q;
continue;
}
edges.eb(p, X + q);
degL[p]++, degR[q]++;
}
RegularBipartiteColoring RBC;
vvc<int> res = RBC.solve(X, D, edges);
vc<int> ecolor(len(edges));
FOR(i, len(res)) {
for (auto&& j: res[i]) ecolor[j] = i;
}
ecolor.resize(G.M);
return {D, ecolor};
}
#line 2 "graph/bipartite_balanced_edge_coloring.hpp"
// 辺を K 色で塗る. 各点のまわりで色が均等(max-min <= 1)にせよ.
// return : color[eid].
// https://codeforces.com/contest/212/problem/A
vc<int> bipartite_balanced_edge_coloring(Graph<int, 0> G, int K) {
int N = G.N, M = G.M;
vc<int> A, B;
vc<int> cnt(N);
vc<int> now(N);
int nxt = 0;
auto get = [&](int v) -> int {
if (cnt[v] % K == 0) { now[v] = nxt++; }
cnt[v]++;
return now[v];
};
for (auto& e: G.edges) {
int a = e.frm, b = e.to;
a = get(a), b = get(b);
A.eb(a), B.eb(b);
}
Graph<int, 0> H(nxt);
FOR(i, M) H.add(A[i], B[i]);
H.build();
return bipartite_edge_coloring(H).se;
}