This documentation is automatically generated by online-judge-tools/verification-helper
#include "geo/closest_pair.hpp"
#include "geo/base.hpp"
#include "random/base.hpp"
#include "random/shuffle.hpp"
#include "ds/hashmap.hpp"
#include "random/hash_pair.hpp"
template <typename T>
pair<int, int> closest_pair(vc<Point<T>> points) {
int N = len(points);
assert(N >= 2);
HashMap<int> MP(N);
vc<int> I(N);
iota(all(I), 0);
shuffle(I);
points = rearrange(points, I);
auto calc = [&](int i, int j) -> T {
return (points[j] - points[i]).dot(points[j] - points[i]);
};
T best = calc(0, 1);
pair<int, int> res = {0, 1};
T w = sqrtl(best);
vc<int> nxt(N, -1);
auto insert = [&](int i) -> void {
u64 k = hash_pair<ll>({points[i].x / w, points[i].y / w});
nxt[i] = MP.get(k, -1);
MP[k] = i;
};
auto query = [&](int i) -> bool {
ll a = points[i].x / w;
ll b = points[i].y / w;
bool upd = 0;
FOR(dx, -1, 2) FOR(dy, -1, 2) {
u64 k = hash_pair<ll>({a + dx, b + dy});
int j = MP.get(k, -1);
while (j != -1) {
if (chmin(best, calc(i, j))) { upd = 1, res = {i, j}, w = sqrtl(best); }
j = nxt[j];
}
}
return upd;
};
if (best == T(0)) {
res.fi = I[res.fi], res.se = I[res.se];
return res;
}
insert(0), insert(1);
FOR(i, 2, N) {
if (query(i)) {
if (best == T(0)) break;
MP.build(N);
FOR(j, i) insert(j);
}
insert(i);
}
res.fi = I[res.fi], res.se = I[res.se];
return res;
}
pair<int, int> closest_pair_dc(vc<Point<ll>> point) {
int N = len(point);
assert(N >= 2);
auto I = argsort(point);
point = rearrange(point, I);
ll best = -1;
pair<int, int> best_pair = {-1, -1};
auto upd = [&](int i, int j) -> void {
Point<ll> p = point[i] - point[j];
ll d = p.dot(p);
if (best == -1 || best > d) { best = d, best_pair = {I[i], I[j]}; }
};
upd(0, 1);
auto dfs = [&](auto &dfs, int L, int R) -> vc<int> {
// return: [L,R) を y について sort したもの
if (R == L + 1) return {L};
int M = (L + R) / 2;
vc<int> I0 = dfs(dfs, L, M);
vc<int> I1 = dfs(dfs, M, R);
vc<int> I;
vc<int> near;
int a = 0, b = 0;
FOR(R - L) {
int idx = [&]() -> int {
if (a == len(I0)) return I1[b++];
if (b == len(I1)) return I0[a++];
int i = I0[a], j = I1[b];
if (point[i].y < point[j].y) {
++a;
return i;
}
++b;
return j;
}();
I.eb(idx);
ll dx = point[M].x - point[idx].x;
if (dx * dx > best) { continue; }
FOR_R(k, len(near)) {
int j = near[k];
ll dy = point[idx].y - point[j].y;
if (best == 0 || dy * dy > best) break;
upd(idx, j);
}
near.eb(idx);
}
return I;
};
dfs(dfs, 0, N);
return best_pair;
}
#line 2 "geo/base.hpp"
template <typename T>
struct Point {
T x, y;
Point() : x(0), y(0) {}
template <typename A, typename B>
Point(A x, B y) : x(x), y(y) {}
template <typename A, typename B>
Point(pair<A, B> p) : x(p.fi), y(p.se) {}
Point operator+=(const Point p) {
x += p.x, y += p.y;
return *this;
}
Point operator-=(const Point p) {
x -= p.x, y -= p.y;
return *this;
}
Point operator+(Point p) const { return {x + p.x, y + p.y}; }
Point operator-(Point p) const { return {x - p.x, y - p.y}; }
bool operator==(Point p) const { return x == p.x && y == p.y; }
bool operator!=(Point p) const { return x != p.x || y != p.y; }
Point operator-() const { return {-x, -y}; }
Point operator*(T t) const { return {x * t, y * t}; }
Point operator/(T t) const { return {x / t, y / t}; }
bool operator<(Point p) const {
if (x != p.x) return x < p.x;
return y < p.y;
}
T dot(const Point& other) const { return x * other.x + y * other.y; }
T det(const Point& other) const { return x * other.y - y * other.x; }
double norm() { return sqrtl(x * x + y * y); }
double angle() { return atan2(y, x); }
Point rotate(double theta) {
static_assert(!is_integral<T>::value);
double c = cos(theta), s = sin(theta);
return Point{c * x - s * y, s * x + c * y};
}
Point rot90(bool ccw) { return (ccw ? Point{-y, x} : Point{y, -x}); }
};
#ifdef FASTIO
template <typename T>
void rd(Point<T>& p) {
fastio::rd(p.x), fastio::rd(p.y);
}
template <typename T>
void wt(Point<T>& p) {
fastio::wt(p.x);
fastio::wt(' ');
fastio::wt(p.y);
}
#endif
// A -> B -> C と進むときに、左に曲がるならば +1、右に曲がるならば -1
template <typename T>
int ccw(Point<T> A, Point<T> B, Point<T> C) {
T x = (B - A).det(C - A);
if (x > 0) return 1;
if (x < 0) return -1;
return 0;
}
template <typename REAL, typename T, typename U>
REAL dist(Point<T> A, Point<U> B) {
REAL dx = REAL(A.x) - REAL(B.x);
REAL dy = REAL(A.y) - REAL(B.y);
return sqrt(dx * dx + dy * dy);
}
// ax+by+c
template <typename T>
struct Line {
T a, b, c;
Line(T a, T b, T c) : a(a), b(b), c(c) {}
Line(Point<T> A, Point<T> B) { a = A.y - B.y, b = B.x - A.x, c = A.x * B.y - A.y * B.x; }
Line(T x1, T y1, T x2, T y2) : Line(Point<T>(x1, y1), Point<T>(x2, y2)) {}
template <typename U>
U eval(Point<U> P) {
return U(a) * P.x + U(b) * P.y + U(c);
}
template <typename U>
T eval(U x, U y) {
return a * x + b * y + c;
}
// 同じ直線が同じ a,b,c で表現されるようにする
void normalize() {
static_assert(is_same_v<T, int> || is_same_v<T, long long>);
T g = gcd(gcd(abs(a), abs(b)), abs(c));
a /= g, b /= g, c /= g;
if (b < 0) { a = -a, b = -b, c = -c; }
if (b == 0 && a < 0) { a = -a, b = -b, c = -c; }
}
bool is_parallel(Line other) { return a * other.b - b * other.a == 0; }
bool is_orthogonal(Line other) { return a * other.a + b * other.b == 0; }
};
template <typename T>
struct Segment {
Point<T> A, B;
Segment(Point<T> A, Point<T> B) : A(A), B(B) {}
Segment(T x1, T y1, T x2, T y2) : Segment(Point<T>(x1, y1), Point<T>(x2, y2)) {}
bool contain(Point<T> C) {
T det = (C - A).det(B - A);
if (det != 0) return 0;
return (C - A).dot(B - A) >= 0 && (C - B).dot(A - B) >= 0;
}
Line<T> to_Line() { return Line(A, B); }
};
template <typename REAL>
struct Circle {
Point<REAL> O;
REAL r;
Circle() {}
Circle(Point<REAL> O, REAL r) : O(O), r(r) {}
Circle(REAL x, REAL y, REAL r) : O(x, y), r(r) {}
template <typename T>
bool contain(Point<T> p) {
REAL dx = p.x - O.x, dy = p.y - O.y;
return dx * dx + dy * dy <= r * r;
}
};
#line 2 "random/base.hpp"
u64 RNG_64() {
static u64 x_ = u64(chrono::duration_cast<chrono::nanoseconds>(chrono::high_resolution_clock::now().time_since_epoch()).count()) * 10150724397891781847ULL;
x_ ^= x_ << 7;
return x_ ^= x_ >> 9;
}
u64 RNG(u64 lim) { return RNG_64() % lim; }
ll RNG(ll l, ll r) { return l + RNG_64() % (r - l); }
#line 2 "random/shuffle.hpp"
template <typename T>
void shuffle(vc<T>& A) {
FOR(i, len(A)) {
int j = RNG(0, i + 1);
if (i != j) swap(A[i], A[j]);
}
}
#line 2 "ds/hashmap.hpp"
// u64 -> Val
template <typename Val>
struct HashMap {
// n は入れたいものの個数で ok
HashMap(u32 n = 0) { build(n); }
void build(u32 n) {
u32 k = 8;
while (k < n * 2) k *= 2;
cap = k / 2, mask = k - 1;
key.resize(k), val.resize(k), used.assign(k, 0);
}
// size を保ったまま. size=0 にするときは build すること.
void clear() {
used.assign(len(used), 0);
cap = (mask + 1) / 2;
}
int size() { return len(used) / 2 - cap; }
int index(const u64& k) {
int i = 0;
for (i = hash(k); used[i] && key[i] != k; i = (i + 1) & mask) {}
return i;
}
Val& operator[](const u64& k) {
if (cap == 0) extend();
int i = index(k);
if (!used[i]) { used[i] = 1, key[i] = k, val[i] = Val{}, --cap; }
return val[i];
}
Val get(const u64& k, Val default_value) {
int i = index(k);
return (used[i] ? val[i] : default_value);
}
bool count(const u64& k) {
int i = index(k);
return used[i] && key[i] == k;
}
// f(key, val)
template <typename F>
void enumerate_all(F f) {
FOR(i, len(used)) if (used[i]) f(key[i], val[i]);
}
private:
u32 cap, mask;
vc<u64> key;
vc<Val> val;
vc<bool> used;
u64 hash(u64 x) {
static const u64 FIXED_RANDOM = std::chrono::steady_clock::now().time_since_epoch().count();
x += FIXED_RANDOM;
x = (x ^ (x >> 30)) * 0xbf58476d1ce4e5b9;
x = (x ^ (x >> 27)) * 0x94d049bb133111eb;
return (x ^ (x >> 31)) & mask;
}
void extend() {
vc<pair<u64, Val>> dat;
dat.reserve(len(used) / 2 - cap);
FOR(i, len(used)) {
if (used[i]) dat.eb(key[i], val[i]);
}
build(2 * len(dat));
for (auto& [a, b]: dat) (*this)[a] = b;
}
};
#line 2 "random/hash_pair.hpp"
template <typename T>
u64 hash_pair(pair<T, T> X) {
static ll hash_base = 0;
if (hash_base == 0) hash_base = RNG_64();
return hash_base * X.fi + X.se;
}
#line 6 "geo/closest_pair.hpp"
template <typename T>
pair<int, int> closest_pair(vc<Point<T>> points) {
int N = len(points);
assert(N >= 2);
HashMap<int> MP(N);
vc<int> I(N);
iota(all(I), 0);
shuffle(I);
points = rearrange(points, I);
auto calc = [&](int i, int j) -> T {
return (points[j] - points[i]).dot(points[j] - points[i]);
};
T best = calc(0, 1);
pair<int, int> res = {0, 1};
T w = sqrtl(best);
vc<int> nxt(N, -1);
auto insert = [&](int i) -> void {
u64 k = hash_pair<ll>({points[i].x / w, points[i].y / w});
nxt[i] = MP.get(k, -1);
MP[k] = i;
};
auto query = [&](int i) -> bool {
ll a = points[i].x / w;
ll b = points[i].y / w;
bool upd = 0;
FOR(dx, -1, 2) FOR(dy, -1, 2) {
u64 k = hash_pair<ll>({a + dx, b + dy});
int j = MP.get(k, -1);
while (j != -1) {
if (chmin(best, calc(i, j))) { upd = 1, res = {i, j}, w = sqrtl(best); }
j = nxt[j];
}
}
return upd;
};
if (best == T(0)) {
res.fi = I[res.fi], res.se = I[res.se];
return res;
}
insert(0), insert(1);
FOR(i, 2, N) {
if (query(i)) {
if (best == T(0)) break;
MP.build(N);
FOR(j, i) insert(j);
}
insert(i);
}
res.fi = I[res.fi], res.se = I[res.se];
return res;
}
pair<int, int> closest_pair_dc(vc<Point<ll>> point) {
int N = len(point);
assert(N >= 2);
auto I = argsort(point);
point = rearrange(point, I);
ll best = -1;
pair<int, int> best_pair = {-1, -1};
auto upd = [&](int i, int j) -> void {
Point<ll> p = point[i] - point[j];
ll d = p.dot(p);
if (best == -1 || best > d) { best = d, best_pair = {I[i], I[j]}; }
};
upd(0, 1);
auto dfs = [&](auto &dfs, int L, int R) -> vc<int> {
// return: [L,R) を y について sort したもの
if (R == L + 1) return {L};
int M = (L + R) / 2;
vc<int> I0 = dfs(dfs, L, M);
vc<int> I1 = dfs(dfs, M, R);
vc<int> I;
vc<int> near;
int a = 0, b = 0;
FOR(R - L) {
int idx = [&]() -> int {
if (a == len(I0)) return I1[b++];
if (b == len(I1)) return I0[a++];
int i = I0[a], j = I1[b];
if (point[i].y < point[j].y) {
++a;
return i;
}
++b;
return j;
}();
I.eb(idx);
ll dx = point[M].x - point[idx].x;
if (dx * dx > best) { continue; }
FOR_R(k, len(near)) {
int j = near[k];
ll dy = point[idx].y - point[j].y;
if (best == 0 || dy * dy > best) break;
upd(idx, j);
}
near.eb(idx);
}
return I;
};
dfs(dfs, 0, N);
return best_pair;
}