This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub maspypy/library
#include "flow/longest_shortest_path.hpp"
#include "flow/mincostflow.hpp" #include "graph/shortest_path/dijkstra.hpp" /* potential p[v] 距離を L 以上にしたい : L<=p[t]-p[s] 辺 (u,v,w) 伸ばす量 max(0,p[v]-p[u]-w) - t から s に費用-L, 容量INF - u から v に費用 w, 容量 1 これの循環流 */ // https://qoj.ac/contest/1435/problem/7737 template <typename T = ll, bool DAG = false> struct Longest_Shortest_Path { int N, s, t; T F, L, K; bool solved; vc<tuple<int, int, T, T>> dat; vc<T> pot; Longest_Shortest_Path(int N, int s, int t) : N(N), s(s), t(t), F(0), solved(0) {} // 現在の長さ, 長さを+1するコスト void add(int frm, int to, T length, T cost) { assert(0 <= frm && frm < N && 0 <= to && to < N && !solved); if (DAG) assert(frm < to); dat.eb(frm, to, length, cost); } T init_dist() { Graph<T, 1> G(N); for (auto& [a, b, c, d]: dat) G.add(a, b, c); G.build(); auto [dist, par] = dijkstra<T>(G, s); return dist[t]; } // 距離が L 以上になるようにせよ. return: min cost. T solve_by_target_length(T target_length) { L = target_length; assert(!solved && L >= init_dist()); solved = 1; Min_Cost_Flow<T, T, DAG> G(N, s, t); for (auto& [a, b, length, cost]: dat) { G.add(a, b, cost, length); } T ans = -infty<T>; for (auto& [x, y]: G.slope()) { if (chmax(ans, x * L - y)) F = x; } return K = ans; } // コストが K で最大距離にせよ. return: max dist. T solve_by_cost(T K) {} // frm, to, cost. add_edge 順. vc<T> get_potentials() { assert(solved); if (len(pot)) return pot; Min_Cost_Flow<T, T, DAG> G(N, s, t); for (auto& [a, b, length, cost]: dat) { G.add(a, b, cost, length); } G.flow(F); pot = G.get_potentials(); Graph<T, 1> resG(N); auto add = [&](int a, int b, T x) -> void { x = x + pot[a] - pot[b]; resG.add(a, b, x); }; for (auto& e: G.edges()) { if (e.cap > e.flow) add(e.frm, e.to, e.cost); if (e.flow > 0) add(e.to, e.frm, -e.cost); } add(s, t, L), add(t, s, -L); resG.build(); vc<T> dist = dijkstra<ll>(resG, s).fi; FOR(x, N) pot[x] += dist[x]; return pot; } // 変更後の長さ vc<T> get_edges() { get_potentials(); vc<T> res; for (auto [frm, to, length, cost]: dat) { res.eb(max<T>(length, pot[to] - pot[frm])); } return res; } };
#line 2 "flow/mincostflow.hpp" // atcoder library のものを改変 namespace internal { template <class E> struct csr { vector<int> start; vector<E> elist; explicit csr(int n, const vector<pair<int, E>>& edges) : start(n + 1), elist(edges.size()) { for (auto e: edges) { start[e.first + 1]++; } for (int i = 1; i <= n; i++) { start[i] += start[i - 1]; } auto counter = start; for (auto e: edges) { elist[counter[e.first]++] = e.second; } } }; template <class T> struct simple_queue { vector<T> payload; int pos = 0; void reserve(int n) { payload.reserve(n); } int size() const { return int(payload.size()) - pos; } bool empty() const { return pos == int(payload.size()); } void push(const T& t) { payload.push_back(t); } T& front() { return payload[pos]; } void clear() { payload.clear(); pos = 0; } void pop() { pos++; } }; } // namespace internal /* ・atcoder library をすこし改変したもの ・DAG = true であれば、負辺 OK (1 回目の最短路を dp で行う) ただし、頂点番号は toposort されていることを仮定している。 */ template <class Cap = int, class Cost = ll, bool DAG = false> struct Min_Cost_Flow { public: Min_Cost_Flow() {} explicit Min_Cost_Flow(int n, int source, int sink) : n(n), source(source), sink(sink) { assert(0 <= source && source < n); assert(0 <= sink && sink < n); assert(source != sink); } // frm, to, cap, cost int add(int frm, int to, Cap cap, Cost cost) { assert(0 <= frm && frm < n); assert(0 <= to && to < n); assert(0 <= cap); assert(DAG || 0 <= cost); if (DAG) assert(frm < to); int m = int(_edges.size()); _edges.push_back({frm, to, cap, 0, cost}); return m; } void debug() { print("flow graph"); print("frm, to, cap, cost"); for (auto&& [frm, to, cap, flow, cost]: _edges) { print(frm, to, cap, cost); } } struct edge { int frm, to; Cap cap, flow; Cost cost; }; edge get_edge(int i) { int m = int(_edges.size()); assert(0 <= i && i < m); return _edges[i]; } vector<edge> edges() { return _edges; } // (流量, 費用) pair<Cap, Cost> flow() { return flow(infty<Cap>); } // (流量, 費用) pair<Cap, Cost> flow(Cap flow_limit) { return slope(flow_limit).back(); } vector<pair<Cap, Cost>> slope() { return slope(infty<Cap>); } vector<pair<Cap, Cost>> slope(Cap flow_limit) { int m = int(_edges.size()); vector<int> edge_idx(m); auto g = [&]() { vector<int> degree(n), redge_idx(m); vector<pair<int, _edge>> elist; elist.reserve(2 * m); for (int i = 0; i < m; i++) { auto e = _edges[i]; edge_idx[i] = degree[e.frm]++; redge_idx[i] = degree[e.to]++; elist.push_back({e.frm, {e.to, -1, e.cap - e.flow, e.cost}}); elist.push_back({e.to, {e.frm, -1, e.flow, -e.cost}}); } auto _g = internal::csr<_edge>(n, elist); for (int i = 0; i < m; i++) { auto e = _edges[i]; edge_idx[i] += _g.start[e.frm]; redge_idx[i] += _g.start[e.to]; _g.elist[edge_idx[i]].rev = redge_idx[i]; _g.elist[redge_idx[i]].rev = edge_idx[i]; } return _g; }(); auto result = slope(g, flow_limit); for (int i = 0; i < m; i++) { auto e = g.elist[edge_idx[i]]; _edges[i].flow = _edges[i].cap - e.cap; } return result; } // O(F(N+M)) くらい使って経路復元 vvc<int> path_decomposition() { vvc<int> TO(n); for (auto&& e: edges()) { FOR(e.flow) TO[e.frm].eb(e.to); } vvc<int> res; vc<int> vis(n); while (!TO[source].empty()) { vc<int> path = {source}; vis[source] = 1; while (path.back() != sink) { int to = POP(TO[path.back()]); while (vis[to]) { vis[POP(path)] = 0; } path.eb(to), vis[to] = 1; } for (auto&& v: path) vis[v] = 0; res.eb(path); } return res; } vc<Cost> get_potentials() { return potential; } private: int n, source, sink; vector<edge> _edges; // inside edge struct _edge { int to, rev; Cap cap; Cost cost; }; vc<Cost> potential; vector<pair<Cap, Cost>> slope(internal::csr<_edge>& g, Cap flow_limit) { if (DAG) assert(source == 0 && sink == n - 1); vector<pair<Cost, Cost>> dual_dist(n); vector<int> prev_e(n); vector<bool> vis(n); struct Q { Cost key; int to; bool operator<(Q r) const { return key > r.key; } }; vector<int> que_min; vector<Q> que; auto dual_ref = [&]() { for (int i = 0; i < n; i++) { dual_dist[i].second = infty<Cost>; } fill(vis.begin(), vis.end(), false); que_min.clear(); que.clear(); // que[0..heap_r) was heapified size_t heap_r = 0; dual_dist[source].second = 0; que_min.push_back(source); while (!que_min.empty() || !que.empty()) { int v; if (!que_min.empty()) { v = que_min.back(); que_min.pop_back(); } else { while (heap_r < que.size()) { heap_r++; push_heap(que.begin(), que.begin() + heap_r); } v = que.front().to; pop_heap(que.begin(), que.end()); que.pop_back(); heap_r--; } if (vis[v]) continue; vis[v] = true; if (v == sink) break; Cost dual_v = dual_dist[v].first, dist_v = dual_dist[v].second; for (int i = g.start[v]; i < g.start[v + 1]; i++) { auto e = g.elist[i]; if (!e.cap) continue; Cost cost = e.cost - dual_dist[e.to].first + dual_v; if (dual_dist[e.to].second > dist_v + cost) { Cost dist_to = dist_v + cost; dual_dist[e.to].second = dist_to; prev_e[e.to] = e.rev; if (dist_to == dist_v) { que_min.push_back(e.to); } else { que.push_back(Q{dist_to, e.to}); } } } } if (!vis[sink]) { return false; } for (int v = 0; v < n; v++) { if (!vis[v]) continue; dual_dist[v].first -= dual_dist[sink].second - dual_dist[v].second; } return true; }; auto dual_ref_dag = [&]() { FOR(i, n) dual_dist[i].se = infty<Cost>; dual_dist[source].se = 0; fill(vis.begin(), vis.end(), false); vis[0] = true; FOR(v, n) { if (!vis[v]) continue; Cost dual_v = dual_dist[v].fi, dist_v = dual_dist[v].se; for (int i = g.start[v]; i < g.start[v + 1]; i++) { auto e = g.elist[i]; if (!e.cap) continue; Cost cost = e.cost - dual_dist[e.to].fi + dual_v; if (dual_dist[e.to].se > dist_v + cost) { vis[e.to] = true; Cost dist_to = dist_v + cost; dual_dist[e.to].second = dist_to; prev_e[e.to] = e.rev; } } } if (!vis[sink]) { return false; } for (int v = 0; v < n; v++) { if (!vis[v]) continue; dual_dist[v].fi -= dual_dist[sink].se - dual_dist[v].se; } return true; }; Cap flow = 0; Cost cost = 0, prev_cost_per_flow = -1; vector<pair<Cap, Cost>> result = {{Cap(0), Cost(0)}}; while (flow < flow_limit) { if (DAG && flow == 0) { if (!dual_ref_dag()) break; } else { if (!dual_ref()) break; } Cap c = flow_limit - flow; for (int v = sink; v != source; v = g.elist[prev_e[v]].to) { c = min(c, g.elist[g.elist[prev_e[v]].rev].cap); } for (int v = sink; v != source; v = g.elist[prev_e[v]].to) { auto& e = g.elist[prev_e[v]]; e.cap += c; g.elist[e.rev].cap -= c; } Cost d = -dual_dist[source].first; flow += c; cost += c * d; if (prev_cost_per_flow == d) { result.pop_back(); } result.push_back({flow, cost}); prev_cost_per_flow = d; } dual_ref(); potential.resize(n); FOR(v, n) potential[v] = dual_dist[v].fi; return result; } }; #line 2 "graph/base.hpp" template <typename T> struct Edge { int frm, to; T cost; int id; }; template <typename T = int, bool directed = false> struct Graph { static constexpr bool is_directed = directed; int N, M; using cost_type = T; using edge_type = Edge<T>; vector<edge_type> edges; vector<int> indptr; vector<edge_type> csr_edges; vc<int> vc_deg, vc_indeg, vc_outdeg; bool prepared; class OutgoingEdges { public: OutgoingEdges(const Graph* G, int l, int r) : G(G), l(l), r(r) {} const edge_type* begin() const { if (l == r) { return 0; } return &G->csr_edges[l]; } const edge_type* end() const { if (l == r) { return 0; } return &G->csr_edges[r]; } private: const Graph* G; int l, r; }; bool is_prepared() { return prepared; } Graph() : N(0), M(0), prepared(0) {} Graph(int N) : N(N), M(0), prepared(0) {} void build(int n) { N = n, M = 0; prepared = 0; edges.clear(); indptr.clear(); csr_edges.clear(); vc_deg.clear(); vc_indeg.clear(); vc_outdeg.clear(); } void add(int frm, int to, T cost = 1, int i = -1) { assert(!prepared); assert(0 <= frm && 0 <= to && to < N); if (i == -1) i = M; auto e = edge_type({frm, to, cost, i}); edges.eb(e); ++M; } #ifdef FASTIO // wt, off void read_tree(bool wt = false, int off = 1) { read_graph(N - 1, wt, off); } void read_graph(int M, bool wt = false, int off = 1) { for (int m = 0; m < M; ++m) { INT(a, b); a -= off, b -= off; if (!wt) { add(a, b); } else { T c; read(c); add(a, b, c); } } build(); } #endif void build() { assert(!prepared); prepared = true; indptr.assign(N + 1, 0); for (auto&& e: edges) { indptr[e.frm + 1]++; if (!directed) indptr[e.to + 1]++; } for (int v = 0; v < N; ++v) { indptr[v + 1] += indptr[v]; } auto counter = indptr; csr_edges.resize(indptr.back() + 1); for (auto&& e: edges) { csr_edges[counter[e.frm]++] = e; if (!directed) csr_edges[counter[e.to]++] = edge_type({e.to, e.frm, e.cost, e.id}); } } OutgoingEdges operator[](int v) const { assert(prepared); return {this, indptr[v], indptr[v + 1]}; } vc<int> deg_array() { if (vc_deg.empty()) calc_deg(); return vc_deg; } pair<vc<int>, vc<int>> deg_array_inout() { if (vc_indeg.empty()) calc_deg_inout(); return {vc_indeg, vc_outdeg}; } int deg(int v) { if (vc_deg.empty()) calc_deg(); return vc_deg[v]; } int in_deg(int v) { if (vc_indeg.empty()) calc_deg_inout(); return vc_indeg[v]; } int out_deg(int v) { if (vc_outdeg.empty()) calc_deg_inout(); return vc_outdeg[v]; } #ifdef FASTIO void debug() { print("Graph"); if (!prepared) { print("frm to cost id"); for (auto&& e: edges) print(e.frm, e.to, e.cost, e.id); } else { print("indptr", indptr); print("frm to cost id"); FOR(v, N) for (auto&& e: (*this)[v]) print(e.frm, e.to, e.cost, e.id); } } #endif vc<int> new_idx; vc<bool> used_e; // G における頂点 V[i] が、新しいグラフで i になるようにする // {G, es} // sum(deg(v)) の計算量になっていて、 // 新しいグラフの n+m より大きい可能性があるので注意 Graph<T, directed> rearrange(vc<int> V, bool keep_eid = 0) { if (len(new_idx) != N) new_idx.assign(N, -1); int n = len(V); FOR(i, n) new_idx[V[i]] = i; Graph<T, directed> G(n); vc<int> history; FOR(i, n) { for (auto&& e: (*this)[V[i]]) { if (len(used_e) <= e.id) used_e.resize(e.id + 1); if (used_e[e.id]) continue; int a = e.frm, b = e.to; if (new_idx[a] != -1 && new_idx[b] != -1) { history.eb(e.id); used_e[e.id] = 1; int eid = (keep_eid ? e.id : -1); G.add(new_idx[a], new_idx[b], e.cost, eid); } } } FOR(i, n) new_idx[V[i]] = -1; for (auto&& eid: history) used_e[eid] = 0; G.build(); return G; } Graph<T, true> to_directed_tree(int root = -1) { if (root == -1) root = 0; assert(!is_directed && prepared && M == N - 1); Graph<T, true> G1(N); vc<int> par(N, -1); auto dfs = [&](auto& dfs, int v) -> void { for (auto& e: (*this)[v]) { if (e.to == par[v]) continue; par[e.to] = v, dfs(dfs, e.to); } }; dfs(dfs, root); for (auto& e: edges) { int a = e.frm, b = e.to; if (par[a] == b) swap(a, b); assert(par[b] == a); G1.add(a, b, e.cost); } G1.build(); return G1; } private: void calc_deg() { assert(vc_deg.empty()); vc_deg.resize(N); for (auto&& e: edges) vc_deg[e.frm]++, vc_deg[e.to]++; } void calc_deg_inout() { assert(vc_indeg.empty()); vc_indeg.resize(N); vc_outdeg.resize(N); for (auto&& e: edges) { vc_indeg[e.to]++, vc_outdeg[e.frm]++; } } }; #line 3 "graph/shortest_path/dijkstra.hpp" template <typename T, typename GT> pair<vc<T>, vc<int>> dijkstra_dense(GT& G, int s) { const int N = G.N; vc<T> dist(N, infty<T>); vc<int> par(N, -1); vc<bool> done(N); dist[s] = 0; while (1) { int v = -1; T mi = infty<T>; FOR(i, N) { if (!done[i] && chmin(mi, dist[i])) v = i; } if (v == -1) break; done[v] = 1; for (auto&& e: G[v]) { if (chmin(dist[e.to], dist[v] + e.cost)) par[e.to] = v; } } return {dist, par}; } template <typename T, typename GT, bool DENSE = false> pair<vc<T>, vc<int>> dijkstra(GT& G, int v) { if (DENSE) return dijkstra_dense<T>(G, v); auto N = G.N; vector<T> dist(N, infty<T>); vector<int> par(N, -1); using P = pair<T, int>; priority_queue<P, vector<P>, greater<P>> que; dist[v] = 0; que.emplace(0, v); while (!que.empty()) { auto [dv, v] = que.top(); que.pop(); if (dv > dist[v]) continue; for (auto&& e: G[v]) { if (chmin(dist[e.to], dist[e.frm] + e.cost)) { par[e.to] = e.frm; que.emplace(dist[e.to], e.to); } } } return {dist, par}; } // 多点スタート。[dist, par, root] template <typename T, typename GT> tuple<vc<T>, vc<int>, vc<int>> dijkstra(GT& G, vc<int> vs) { assert(G.is_prepared()); int N = G.N; vc<T> dist(N, infty<T>); vc<int> par(N, -1); vc<int> root(N, -1); using P = pair<T, int>; priority_queue<P, vector<P>, greater<P>> que; for (auto&& v: vs) { dist[v] = 0; root[v] = v; que.emplace(T(0), v); } while (!que.empty()) { auto [dv, v] = que.top(); que.pop(); if (dv > dist[v]) continue; for (auto&& e: G[v]) { if (chmin(dist[e.to], dist[e.frm] + e.cost)) { root[e.to] = root[e.frm]; par[e.to] = e.frm; que.push(mp(dist[e.to], e.to)); } } } return {dist, par, root}; } #line 3 "flow/longest_shortest_path.hpp" /* potential p[v] 距離を L 以上にしたい : L<=p[t]-p[s] 辺 (u,v,w) 伸ばす量 max(0,p[v]-p[u]-w) - t から s に費用-L, 容量INF - u から v に費用 w, 容量 1 これの循環流 */ // https://qoj.ac/contest/1435/problem/7737 template <typename T = ll, bool DAG = false> struct Longest_Shortest_Path { int N, s, t; T F, L, K; bool solved; vc<tuple<int, int, T, T>> dat; vc<T> pot; Longest_Shortest_Path(int N, int s, int t) : N(N), s(s), t(t), F(0), solved(0) {} // 現在の長さ, 長さを+1するコスト void add(int frm, int to, T length, T cost) { assert(0 <= frm && frm < N && 0 <= to && to < N && !solved); if (DAG) assert(frm < to); dat.eb(frm, to, length, cost); } T init_dist() { Graph<T, 1> G(N); for (auto& [a, b, c, d]: dat) G.add(a, b, c); G.build(); auto [dist, par] = dijkstra<T>(G, s); return dist[t]; } // 距離が L 以上になるようにせよ. return: min cost. T solve_by_target_length(T target_length) { L = target_length; assert(!solved && L >= init_dist()); solved = 1; Min_Cost_Flow<T, T, DAG> G(N, s, t); for (auto& [a, b, length, cost]: dat) { G.add(a, b, cost, length); } T ans = -infty<T>; for (auto& [x, y]: G.slope()) { if (chmax(ans, x * L - y)) F = x; } return K = ans; } // コストが K で最大距離にせよ. return: max dist. T solve_by_cost(T K) {} // frm, to, cost. add_edge 順. vc<T> get_potentials() { assert(solved); if (len(pot)) return pot; Min_Cost_Flow<T, T, DAG> G(N, s, t); for (auto& [a, b, length, cost]: dat) { G.add(a, b, cost, length); } G.flow(F); pot = G.get_potentials(); Graph<T, 1> resG(N); auto add = [&](int a, int b, T x) -> void { x = x + pot[a] - pot[b]; resG.add(a, b, x); }; for (auto& e: G.edges()) { if (e.cap > e.flow) add(e.frm, e.to, e.cost); if (e.flow > 0) add(e.to, e.frm, -e.cost); } add(s, t, L), add(t, s, -L); resG.build(); vc<T> dist = dijkstra<ll>(resG, s).fi; FOR(x, N) pot[x] += dist[x]; return pot; } // 変更後の長さ vc<T> get_edges() { get_potentials(); vc<T> res; for (auto [frm, to, length, cost]: dat) { res.eb(max<T>(length, pot[to] - pot[frm])); } return res; } };