This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub maspypy/library
#include "flow/mincostflow.hpp"
#pragma once // atcoder library のものを改変 namespace internal { template <class E> struct csr { vector<int> start; vector<E> elist; explicit csr(int n, const vector<pair<int, E>>& edges) : start(n + 1), elist(edges.size()) { for (auto e: edges) { start[e.first + 1]++; } for (int i = 1; i <= n; i++) { start[i] += start[i - 1]; } auto counter = start; for (auto e: edges) { elist[counter[e.first]++] = e.second; } } }; template <class T> struct simple_queue { vector<T> payload; int pos = 0; void reserve(int n) { payload.reserve(n); } int size() const { return int(payload.size()) - pos; } bool empty() const { return pos == int(payload.size()); } void push(const T& t) { payload.push_back(t); } T& front() { return payload[pos]; } void clear() { payload.clear(); pos = 0; } void pop() { pos++; } }; } // namespace internal /* ・atcoder library をすこし改変したもの ・DAG = true であれば、負辺 OK (1 回目の最短路を dp で行う) ただし、頂点番号は toposort されていることを仮定している。 */ template <class Cap = int, class Cost = ll, bool DAG = false> struct Min_Cost_Flow { public: Min_Cost_Flow() {} explicit Min_Cost_Flow(int n, int source, int sink) : n(n), source(source), sink(sink) { assert(0 <= source && source < n); assert(0 <= sink && sink < n); assert(source != sink); } // frm, to, cap, cost int add(int frm, int to, Cap cap, Cost cost) { assert(0 <= frm && frm < n); assert(0 <= to && to < n); assert(0 <= cap); assert(DAG || 0 <= cost); if (DAG) assert(frm < to); int m = int(_edges.size()); _edges.push_back({frm, to, cap, 0, cost}); return m; } void debug() { print("flow graph"); print("frm, to, cap, cost"); for (auto&& [frm, to, cap, flow, cost]: _edges) { print(frm, to, cap, cost); } } struct edge { int frm, to; Cap cap, flow; Cost cost; }; edge get_edge(int i) { int m = int(_edges.size()); assert(0 <= i && i < m); return _edges[i]; } vector<edge> edges() { return _edges; } // (流量, 費用) pair<Cap, Cost> flow() { return flow(infty<Cap>); } // (流量, 費用) pair<Cap, Cost> flow(Cap flow_limit) { return slope(flow_limit).back(); } vector<pair<Cap, Cost>> slope() { return slope(infty<Cap>); } vector<pair<Cap, Cost>> slope(Cap flow_limit) { int m = int(_edges.size()); vector<int> edge_idx(m); auto g = [&]() { vector<int> degree(n), redge_idx(m); vector<pair<int, _edge>> elist; elist.reserve(2 * m); for (int i = 0; i < m; i++) { auto e = _edges[i]; edge_idx[i] = degree[e.frm]++; redge_idx[i] = degree[e.to]++; elist.push_back({e.frm, {e.to, -1, e.cap - e.flow, e.cost}}); elist.push_back({e.to, {e.frm, -1, e.flow, -e.cost}}); } auto _g = internal::csr<_edge>(n, elist); for (int i = 0; i < m; i++) { auto e = _edges[i]; edge_idx[i] += _g.start[e.frm]; redge_idx[i] += _g.start[e.to]; _g.elist[edge_idx[i]].rev = redge_idx[i]; _g.elist[redge_idx[i]].rev = edge_idx[i]; } return _g; }(); auto result = slope(g, flow_limit); for (int i = 0; i < m; i++) { auto e = g.elist[edge_idx[i]]; _edges[i].flow = _edges[i].cap - e.cap; } return result; } // O(F(N+M)) くらい使って経路復元 vvc<int> path_decomposition() { vvc<int> TO(n); for (auto&& e: edges()) { FOR(e.flow) TO[e.frm].eb(e.to); } vvc<int> res; vc<int> vis(n); while (!TO[source].empty()) { vc<int> path = {source}; vis[source] = 1; while (path.back() != sink) { int to = POP(TO[path.back()]); while (vis[to]) { vis[POP(path)] = 0; } path.eb(to), vis[to] = 1; } for (auto&& v: path) vis[v] = 0; res.eb(path); } return res; } vc<Cost> get_potentials() { return potential; } private: int n, source, sink; vector<edge> _edges; // inside edge struct _edge { int to, rev; Cap cap; Cost cost; }; vc<Cost> potential; vector<pair<Cap, Cost>> slope(internal::csr<_edge>& g, Cap flow_limit) { if (DAG) assert(source == 0 && sink == n - 1); vector<pair<Cost, Cost>> dual_dist(n); vector<int> prev_e(n); vector<bool> vis(n); struct Q { Cost key; int to; bool operator<(Q r) const { return key > r.key; } }; vector<int> que_min; vector<Q> que; auto dual_ref = [&]() { for (int i = 0; i < n; i++) { dual_dist[i].second = infty<Cost>; } fill(vis.begin(), vis.end(), false); que_min.clear(); que.clear(); // que[0..heap_r) was heapified size_t heap_r = 0; dual_dist[source].second = 0; que_min.push_back(source); while (!que_min.empty() || !que.empty()) { int v; if (!que_min.empty()) { v = que_min.back(); que_min.pop_back(); } else { while (heap_r < que.size()) { heap_r++; push_heap(que.begin(), que.begin() + heap_r); } v = que.front().to; pop_heap(que.begin(), que.end()); que.pop_back(); heap_r--; } if (vis[v]) continue; vis[v] = true; if (v == sink) break; Cost dual_v = dual_dist[v].first, dist_v = dual_dist[v].second; for (int i = g.start[v]; i < g.start[v + 1]; i++) { auto e = g.elist[i]; if (!e.cap) continue; Cost cost = e.cost - dual_dist[e.to].first + dual_v; if (dual_dist[e.to].second > dist_v + cost) { Cost dist_to = dist_v + cost; dual_dist[e.to].second = dist_to; prev_e[e.to] = e.rev; if (dist_to == dist_v) { que_min.push_back(e.to); } else { que.push_back(Q{dist_to, e.to}); } } } } if (!vis[sink]) { return false; } for (int v = 0; v < n; v++) { if (!vis[v]) continue; dual_dist[v].first -= dual_dist[sink].second - dual_dist[v].second; } return true; }; auto dual_ref_dag = [&]() { FOR(i, n) dual_dist[i].se = infty<Cost>; dual_dist[source].se = 0; fill(vis.begin(), vis.end(), false); vis[0] = true; FOR(v, n) { if (!vis[v]) continue; Cost dual_v = dual_dist[v].fi, dist_v = dual_dist[v].se; for (int i = g.start[v]; i < g.start[v + 1]; i++) { auto e = g.elist[i]; if (!e.cap) continue; Cost cost = e.cost - dual_dist[e.to].fi + dual_v; if (dual_dist[e.to].se > dist_v + cost) { vis[e.to] = true; Cost dist_to = dist_v + cost; dual_dist[e.to].second = dist_to; prev_e[e.to] = e.rev; } } } if (!vis[sink]) { return false; } for (int v = 0; v < n; v++) { if (!vis[v]) continue; dual_dist[v].fi -= dual_dist[sink].se - dual_dist[v].se; } return true; }; Cap flow = 0; Cost cost = 0, prev_cost_per_flow = -1; vector<pair<Cap, Cost>> result = {{Cap(0), Cost(0)}}; while (flow < flow_limit) { if (DAG && flow == 0) { if (!dual_ref_dag()) break; } else { if (!dual_ref()) break; } Cap c = flow_limit - flow; for (int v = sink; v != source; v = g.elist[prev_e[v]].to) { c = min(c, g.elist[g.elist[prev_e[v]].rev].cap); } for (int v = sink; v != source; v = g.elist[prev_e[v]].to) { auto& e = g.elist[prev_e[v]]; e.cap += c; g.elist[e.rev].cap -= c; } Cost d = -dual_dist[source].first; flow += c; cost += c * d; if (prev_cost_per_flow == d) { result.pop_back(); } result.push_back({flow, cost}); prev_cost_per_flow = d; } dual_ref(); potential.resize(n); FOR(v, n) potential[v] = dual_dist[v].fi; return result; } };
#line 2 "flow/mincostflow.hpp" // atcoder library のものを改変 namespace internal { template <class E> struct csr { vector<int> start; vector<E> elist; explicit csr(int n, const vector<pair<int, E>>& edges) : start(n + 1), elist(edges.size()) { for (auto e: edges) { start[e.first + 1]++; } for (int i = 1; i <= n; i++) { start[i] += start[i - 1]; } auto counter = start; for (auto e: edges) { elist[counter[e.first]++] = e.second; } } }; template <class T> struct simple_queue { vector<T> payload; int pos = 0; void reserve(int n) { payload.reserve(n); } int size() const { return int(payload.size()) - pos; } bool empty() const { return pos == int(payload.size()); } void push(const T& t) { payload.push_back(t); } T& front() { return payload[pos]; } void clear() { payload.clear(); pos = 0; } void pop() { pos++; } }; } // namespace internal /* ・atcoder library をすこし改変したもの ・DAG = true であれば、負辺 OK (1 回目の最短路を dp で行う) ただし、頂点番号は toposort されていることを仮定している。 */ template <class Cap = int, class Cost = ll, bool DAG = false> struct Min_Cost_Flow { public: Min_Cost_Flow() {} explicit Min_Cost_Flow(int n, int source, int sink) : n(n), source(source), sink(sink) { assert(0 <= source && source < n); assert(0 <= sink && sink < n); assert(source != sink); } // frm, to, cap, cost int add(int frm, int to, Cap cap, Cost cost) { assert(0 <= frm && frm < n); assert(0 <= to && to < n); assert(0 <= cap); assert(DAG || 0 <= cost); if (DAG) assert(frm < to); int m = int(_edges.size()); _edges.push_back({frm, to, cap, 0, cost}); return m; } void debug() { print("flow graph"); print("frm, to, cap, cost"); for (auto&& [frm, to, cap, flow, cost]: _edges) { print(frm, to, cap, cost); } } struct edge { int frm, to; Cap cap, flow; Cost cost; }; edge get_edge(int i) { int m = int(_edges.size()); assert(0 <= i && i < m); return _edges[i]; } vector<edge> edges() { return _edges; } // (流量, 費用) pair<Cap, Cost> flow() { return flow(infty<Cap>); } // (流量, 費用) pair<Cap, Cost> flow(Cap flow_limit) { return slope(flow_limit).back(); } vector<pair<Cap, Cost>> slope() { return slope(infty<Cap>); } vector<pair<Cap, Cost>> slope(Cap flow_limit) { int m = int(_edges.size()); vector<int> edge_idx(m); auto g = [&]() { vector<int> degree(n), redge_idx(m); vector<pair<int, _edge>> elist; elist.reserve(2 * m); for (int i = 0; i < m; i++) { auto e = _edges[i]; edge_idx[i] = degree[e.frm]++; redge_idx[i] = degree[e.to]++; elist.push_back({e.frm, {e.to, -1, e.cap - e.flow, e.cost}}); elist.push_back({e.to, {e.frm, -1, e.flow, -e.cost}}); } auto _g = internal::csr<_edge>(n, elist); for (int i = 0; i < m; i++) { auto e = _edges[i]; edge_idx[i] += _g.start[e.frm]; redge_idx[i] += _g.start[e.to]; _g.elist[edge_idx[i]].rev = redge_idx[i]; _g.elist[redge_idx[i]].rev = edge_idx[i]; } return _g; }(); auto result = slope(g, flow_limit); for (int i = 0; i < m; i++) { auto e = g.elist[edge_idx[i]]; _edges[i].flow = _edges[i].cap - e.cap; } return result; } // O(F(N+M)) くらい使って経路復元 vvc<int> path_decomposition() { vvc<int> TO(n); for (auto&& e: edges()) { FOR(e.flow) TO[e.frm].eb(e.to); } vvc<int> res; vc<int> vis(n); while (!TO[source].empty()) { vc<int> path = {source}; vis[source] = 1; while (path.back() != sink) { int to = POP(TO[path.back()]); while (vis[to]) { vis[POP(path)] = 0; } path.eb(to), vis[to] = 1; } for (auto&& v: path) vis[v] = 0; res.eb(path); } return res; } vc<Cost> get_potentials() { return potential; } private: int n, source, sink; vector<edge> _edges; // inside edge struct _edge { int to, rev; Cap cap; Cost cost; }; vc<Cost> potential; vector<pair<Cap, Cost>> slope(internal::csr<_edge>& g, Cap flow_limit) { if (DAG) assert(source == 0 && sink == n - 1); vector<pair<Cost, Cost>> dual_dist(n); vector<int> prev_e(n); vector<bool> vis(n); struct Q { Cost key; int to; bool operator<(Q r) const { return key > r.key; } }; vector<int> que_min; vector<Q> que; auto dual_ref = [&]() { for (int i = 0; i < n; i++) { dual_dist[i].second = infty<Cost>; } fill(vis.begin(), vis.end(), false); que_min.clear(); que.clear(); // que[0..heap_r) was heapified size_t heap_r = 0; dual_dist[source].second = 0; que_min.push_back(source); while (!que_min.empty() || !que.empty()) { int v; if (!que_min.empty()) { v = que_min.back(); que_min.pop_back(); } else { while (heap_r < que.size()) { heap_r++; push_heap(que.begin(), que.begin() + heap_r); } v = que.front().to; pop_heap(que.begin(), que.end()); que.pop_back(); heap_r--; } if (vis[v]) continue; vis[v] = true; if (v == sink) break; Cost dual_v = dual_dist[v].first, dist_v = dual_dist[v].second; for (int i = g.start[v]; i < g.start[v + 1]; i++) { auto e = g.elist[i]; if (!e.cap) continue; Cost cost = e.cost - dual_dist[e.to].first + dual_v; if (dual_dist[e.to].second > dist_v + cost) { Cost dist_to = dist_v + cost; dual_dist[e.to].second = dist_to; prev_e[e.to] = e.rev; if (dist_to == dist_v) { que_min.push_back(e.to); } else { que.push_back(Q{dist_to, e.to}); } } } } if (!vis[sink]) { return false; } for (int v = 0; v < n; v++) { if (!vis[v]) continue; dual_dist[v].first -= dual_dist[sink].second - dual_dist[v].second; } return true; }; auto dual_ref_dag = [&]() { FOR(i, n) dual_dist[i].se = infty<Cost>; dual_dist[source].se = 0; fill(vis.begin(), vis.end(), false); vis[0] = true; FOR(v, n) { if (!vis[v]) continue; Cost dual_v = dual_dist[v].fi, dist_v = dual_dist[v].se; for (int i = g.start[v]; i < g.start[v + 1]; i++) { auto e = g.elist[i]; if (!e.cap) continue; Cost cost = e.cost - dual_dist[e.to].fi + dual_v; if (dual_dist[e.to].se > dist_v + cost) { vis[e.to] = true; Cost dist_to = dist_v + cost; dual_dist[e.to].second = dist_to; prev_e[e.to] = e.rev; } } } if (!vis[sink]) { return false; } for (int v = 0; v < n; v++) { if (!vis[v]) continue; dual_dist[v].fi -= dual_dist[sink].se - dual_dist[v].se; } return true; }; Cap flow = 0; Cost cost = 0, prev_cost_per_flow = -1; vector<pair<Cap, Cost>> result = {{Cap(0), Cost(0)}}; while (flow < flow_limit) { if (DAG && flow == 0) { if (!dual_ref_dag()) break; } else { if (!dual_ref()) break; } Cap c = flow_limit - flow; for (int v = sink; v != source; v = g.elist[prev_e[v]].to) { c = min(c, g.elist[g.elist[prev_e[v]].rev].cap); } for (int v = sink; v != source; v = g.elist[prev_e[v]].to) { auto& e = g.elist[prev_e[v]]; e.cap += c; g.elist[e.rev].cap -= c; } Cost d = -dual_dist[source].first; flow += c; cost += c * d; if (prev_cost_per_flow == d) { result.pop_back(); } result.push_back({flow, cost}); prev_cost_per_flow = d; } dual_ref(); potential.resize(n); FOR(v, n) potential[v] = dual_dist[v].fi; return result; } };