This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub maspypy/library
#include "ds/segtree/range_add_range_min.hpp"
#include "ds/segtree/segtree.hpp" // INF+x==INF みたいな処理は入れていない // N=Q=10^6 で lazysegtree より 40% 程度高速 template <typename T> struct Range_Add_Range_Min { struct Mono { using value_type = pair<T, T>; using X = value_type; static X op(X L, X R) { return {L.fi + R.fi, min(L.se, L.fi + R.se)}; } static constexpr X unit() { return {0, infty<ll>}; } static constexpr bool commute = false; }; int n; T lazy; SegTree<Mono> seg; Range_Add_Range_Min() {} Range_Add_Range_Min(int n) { build(n); } template <typename F> Range_Add_Range_Min(int n, F f) { build(n, f); } Range_Add_Range_Min(const vc<T>& v) { build(v); } void build(int m) { build(m, [](int i) -> T { return infty<T>; }); } void build(const vc<T>& v) { build(len(v), [&](int i) -> T { return v[i]; }); } template <typename F> void build(int m, F f) { lazy = 0; n = m; T pre = 0; seg.build(n, [&](int i) -> pair<T, T> { T t = f(i) - pre; pre += t; return {t, t}; }); } T prod(int L, int R) { if (L == R) return infty<T>; ll ans = seg.prod(L, R).se; L += seg.size; for (; L > 0; L /= 2) { if (L & 1) ans += seg.dat[--L].fi; } return ans + lazy; } void apply(int L, int R, T x) { apply_suffix(L, x), apply_suffix(R, -x); } // [0,i) void apply_prefix(int i, T x) { lazy += x; apply_suffix(i, -x); } // [i,n) void apply_suffix(int i, T x) { if (i == n) return; T t = seg.get(i).fi + x; seg.set(i, {t, t}); } void apply_all(T x) { lazy += x; } };
#line 2 "ds/segtree/segtree.hpp" template <class Monoid> struct SegTree { using MX = Monoid; using X = typename MX::value_type; using value_type = X; vc<X> dat; int n, log, size; SegTree() {} SegTree(int n) { build(n); } template <typename F> SegTree(int n, F f) { build(n, f); } SegTree(const vc<X>& v) { build(v); } void build(int m) { build(m, [](int i) -> X { return MX::unit(); }); } void build(const vc<X>& v) { build(len(v), [&](int i) -> X { return v[i]; }); } template <typename F> void build(int m, F f) { n = m, log = 1; while ((1 << log) < n) ++log; size = 1 << log; dat.assign(size << 1, MX::unit()); FOR(i, n) dat[size + i] = f(i); FOR_R(i, 1, size) update(i); } X get(int i) { return dat[size + i]; } vc<X> get_all() { return {dat.begin() + size, dat.begin() + size + n}; } void update(int i) { dat[i] = Monoid::op(dat[2 * i], dat[2 * i + 1]); } void set(int i, const X& x) { assert(i < n); dat[i += size] = x; while (i >>= 1) update(i); } void multiply(int i, const X& x) { assert(i < n); i += size; dat[i] = Monoid::op(dat[i], x); while (i >>= 1) update(i); } X prod(int L, int R) { assert(0 <= L && L <= R && R <= n); X vl = Monoid::unit(), vr = Monoid::unit(); L += size, R += size; while (L < R) { if (L & 1) vl = Monoid::op(vl, dat[L++]); if (R & 1) vr = Monoid::op(dat[--R], vr); L >>= 1, R >>= 1; } return Monoid::op(vl, vr); } X prod_all() { return dat[1]; } template <class F> int max_right(F check, int L) { assert(0 <= L && L <= n && check(Monoid::unit())); if (L == n) return n; L += size; X sm = Monoid::unit(); do { while (L % 2 == 0) L >>= 1; if (!check(Monoid::op(sm, dat[L]))) { while (L < size) { L = 2 * L; if (check(Monoid::op(sm, dat[L]))) { sm = Monoid::op(sm, dat[L++]); } } return L - size; } sm = Monoid::op(sm, dat[L++]); } while ((L & -L) != L); return n; } template <class F> int min_left(F check, int R) { assert(0 <= R && R <= n && check(Monoid::unit())); if (R == 0) return 0; R += size; X sm = Monoid::unit(); do { --R; while (R > 1 && (R % 2)) R >>= 1; if (!check(Monoid::op(dat[R], sm))) { while (R < size) { R = 2 * R + 1; if (check(Monoid::op(dat[R], sm))) { sm = Monoid::op(dat[R--], sm); } } return R + 1 - size; } sm = Monoid::op(dat[R], sm); } while ((R & -R) != R); return 0; } // prod_{l<=i<r} A[i xor x] X xor_prod(int l, int r, int xor_val) { static_assert(Monoid::commute); X x = Monoid::unit(); for (int k = 0; k < log + 1; ++k) { if (l >= r) break; if (l & 1) { x = Monoid::op(x, dat[(size >> k) + ((l++) ^ xor_val)]); } if (r & 1) { x = Monoid::op(x, dat[(size >> k) + ((--r) ^ xor_val)]); } l /= 2, r /= 2, xor_val /= 2; } return x; } }; #line 2 "ds/segtree/range_add_range_min.hpp" // INF+x==INF みたいな処理は入れていない // N=Q=10^6 で lazysegtree より 40% 程度高速 template <typename T> struct Range_Add_Range_Min { struct Mono { using value_type = pair<T, T>; using X = value_type; static X op(X L, X R) { return {L.fi + R.fi, min(L.se, L.fi + R.se)}; } static constexpr X unit() { return {0, infty<ll>}; } static constexpr bool commute = false; }; int n; T lazy; SegTree<Mono> seg; Range_Add_Range_Min() {} Range_Add_Range_Min(int n) { build(n); } template <typename F> Range_Add_Range_Min(int n, F f) { build(n, f); } Range_Add_Range_Min(const vc<T>& v) { build(v); } void build(int m) { build(m, [](int i) -> T { return infty<T>; }); } void build(const vc<T>& v) { build(len(v), [&](int i) -> T { return v[i]; }); } template <typename F> void build(int m, F f) { lazy = 0; n = m; T pre = 0; seg.build(n, [&](int i) -> pair<T, T> { T t = f(i) - pre; pre += t; return {t, t}; }); } T prod(int L, int R) { if (L == R) return infty<T>; ll ans = seg.prod(L, R).se; L += seg.size; for (; L > 0; L /= 2) { if (L & 1) ans += seg.dat[--L].fi; } return ans + lazy; } void apply(int L, int R, T x) { apply_suffix(L, x), apply_suffix(R, -x); } // [0,i) void apply_prefix(int i, T x) { lazy += x; apply_suffix(i, -x); } // [i,n) void apply_suffix(int i, T x) { if (i == n) return; T t = seg.get(i).fi + x; seg.set(i, {t, t}); } void apply_all(T x) { lazy += x; } };