This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub maspypy/library
#include "ds/offline_query/uniqueproductquery.hpp"
#include "ds/segtree/segtree.hpp" // [L, R) 内の要素 (long long)を UNIQUE した上で、f(x)の総積をとったものを計算。 // クエリ先読みソート+セグ木 // クエリを全部 add(L,R) する // calc(f) として呼ぶ template <typename Mono> struct UniqueProductQuery { using X = typename Mono::value_type; int N; vc<int> A; vc<pair<int, int>> query; UniqueProductQuery(vc<int>& A) : N(len(A)), A(A) {} void add(int L, int R) { assert(0 <= L && L <= R && R <= N); query.eb(L, R); } template <typename F> vc<X> calc(F f) { ll Q = len(query); vc<X> ANS(Q); vc<vc<int>> IDS(N + 1); FOR(q, Q) IDS[query[q].se].eb(q); SegTree<Mono> seg(N); unordered_map<int, int> pos; pos.reserve(N); for (auto&& q: IDS[0]) { ANS[q] = Mono::unit(); } FOR(i, N) { int x = A[i]; if (pos.count(x)) { seg.set(pos[x], Mono::unit()); } pos[x] = i; seg.set(i, f(A[i])); for (auto&& q: IDS[i + 1]) { auto [L, R] = query[q]; ANS[q] = seg.prod(L, R); } } return ANS; } vc<X> calc() { auto f = [&](ll k) -> X { return 1; }; return calc(f); } };
#line 2 "ds/segtree/segtree.hpp" template <class Monoid> struct SegTree { using MX = Monoid; using X = typename MX::value_type; using value_type = X; vc<X> dat; int n, log, size; SegTree() {} SegTree(int n) { build(n); } template <typename F> SegTree(int n, F f) { build(n, f); } SegTree(const vc<X>& v) { build(v); } void build(int m) { build(m, [](int i) -> X { return MX::unit(); }); } void build(const vc<X>& v) { build(len(v), [&](int i) -> X { return v[i]; }); } template <typename F> void build(int m, F f) { n = m, log = 1; while ((1 << log) < n) ++log; size = 1 << log; dat.assign(size << 1, MX::unit()); FOR(i, n) dat[size + i] = f(i); FOR_R(i, 1, size) update(i); } X get(int i) { return dat[size + i]; } vc<X> get_all() { return {dat.begin() + size, dat.begin() + size + n}; } void update(int i) { dat[i] = Monoid::op(dat[2 * i], dat[2 * i + 1]); } void set(int i, const X& x) { assert(i < n); dat[i += size] = x; while (i >>= 1) update(i); } void multiply(int i, const X& x) { assert(i < n); i += size; dat[i] = Monoid::op(dat[i], x); while (i >>= 1) update(i); } X prod(int L, int R) { assert(0 <= L && L <= R && R <= n); X vl = Monoid::unit(), vr = Monoid::unit(); L += size, R += size; while (L < R) { if (L & 1) vl = Monoid::op(vl, dat[L++]); if (R & 1) vr = Monoid::op(dat[--R], vr); L >>= 1, R >>= 1; } return Monoid::op(vl, vr); } X prod_all() { return dat[1]; } template <class F> int max_right(F check, int L) { assert(0 <= L && L <= n && check(Monoid::unit())); if (L == n) return n; L += size; X sm = Monoid::unit(); do { while (L % 2 == 0) L >>= 1; if (!check(Monoid::op(sm, dat[L]))) { while (L < size) { L = 2 * L; if (check(Monoid::op(sm, dat[L]))) { sm = Monoid::op(sm, dat[L++]); } } return L - size; } sm = Monoid::op(sm, dat[L++]); } while ((L & -L) != L); return n; } template <class F> int min_left(F check, int R) { assert(0 <= R && R <= n && check(Monoid::unit())); if (R == 0) return 0; R += size; X sm = Monoid::unit(); do { --R; while (R > 1 && (R % 2)) R >>= 1; if (!check(Monoid::op(dat[R], sm))) { while (R < size) { R = 2 * R + 1; if (check(Monoid::op(dat[R], sm))) { sm = Monoid::op(dat[R--], sm); } } return R + 1 - size; } sm = Monoid::op(dat[R], sm); } while ((R & -R) != R); return 0; } // prod_{l<=i<r} A[i xor x] X xor_prod(int l, int r, int xor_val) { static_assert(Monoid::commute); X x = Monoid::unit(); for (int k = 0; k < log + 1; ++k) { if (l >= r) break; if (l & 1) { x = Monoid::op(x, dat[(size >> k) + ((l++) ^ xor_val)]); } if (r & 1) { x = Monoid::op(x, dat[(size >> k) + ((--r) ^ xor_val)]); } l /= 2, r /= 2, xor_val /= 2; } return x; } }; #line 2 "ds/offline_query/uniqueproductquery.hpp" // [L, R) 内の要素 (long long)を UNIQUE した上で、f(x)の総積をとったものを計算。 // クエリ先読みソート+セグ木 // クエリを全部 add(L,R) する // calc(f) として呼ぶ template <typename Mono> struct UniqueProductQuery { using X = typename Mono::value_type; int N; vc<int> A; vc<pair<int, int>> query; UniqueProductQuery(vc<int>& A) : N(len(A)), A(A) {} void add(int L, int R) { assert(0 <= L && L <= R && R <= N); query.eb(L, R); } template <typename F> vc<X> calc(F f) { ll Q = len(query); vc<X> ANS(Q); vc<vc<int>> IDS(N + 1); FOR(q, Q) IDS[query[q].se].eb(q); SegTree<Mono> seg(N); unordered_map<int, int> pos; pos.reserve(N); for (auto&& q: IDS[0]) { ANS[q] = Mono::unit(); } FOR(i, N) { int x = A[i]; if (pos.count(x)) { seg.set(pos[x], Mono::unit()); } pos[x] = i; seg.set(i, f(A[i])); for (auto&& q: IDS[i + 1]) { auto [L, R] = query[q]; ANS[q] = seg.prod(L, R); } } return ANS; } vc<X> calc() { auto f = [&](ll k) -> X { return 1; }; return calc(f); } };