This documentation is automatically generated by online-judge-tools/verification-helper
#define PROBLEM "https://yukicoder.me/problems/no/4"
#include "my_template.hpp"
#include "other/io.hpp"
#include "mod/modular_subset_sum.hpp"
void solve() {
LL(N);
VEC(int, A, N);
ll S = SUM<ll>(A);
Modular_Subset_Sum MSS(S + 1, A);
if (MSS[S / 2] && S % 2 == 0) {
print("possible");
} else {
print("impossible");
}
}
signed main() {
cin.tie(nullptr);
ios::sync_with_stdio(false);
cout << setprecision(15);
ll T = 1;
// LL(T);
FOR(_, T) solve();
return 0;
}
#line 1 "test/yukicoder/4_1.test.cpp"
#define PROBLEM "https://yukicoder.me/problems/no/4"
#line 1 "my_template.hpp"
#if defined(LOCAL)
#include <my_template_compiled.hpp>
#else
#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using u32 = unsigned int;
using u64 = unsigned long long;
using i128 = __int128;
using u128 = unsigned __int128;
using f128 = __float128;
template <class T>
constexpr T infty = 0;
template <>
constexpr int infty<int> = 1'000'000'000;
template <>
constexpr ll infty<ll> = ll(infty<int>) * infty<int> * 2;
template <>
constexpr u32 infty<u32> = infty<int>;
template <>
constexpr u64 infty<u64> = infty<ll>;
template <>
constexpr i128 infty<i128> = i128(infty<ll>) * infty<ll>;
template <>
constexpr double infty<double> = infty<ll>;
template <>
constexpr long double infty<long double> = infty<ll>;
using pi = pair<ll, ll>;
using vi = vector<ll>;
template <class T>
using vc = vector<T>;
template <class T>
using vvc = vector<vc<T>>;
template <class T>
using vvvc = vector<vvc<T>>;
template <class T>
using vvvvc = vector<vvvc<T>>;
template <class T>
using vvvvvc = vector<vvvvc<T>>;
template <class T>
using pq = priority_queue<T>;
template <class T>
using pqg = priority_queue<T, vector<T>, greater<T>>;
#define vv(type, name, h, ...) \
vector<vector<type>> name(h, vector<type>(__VA_ARGS__))
#define vvv(type, name, h, w, ...) \
vector<vector<vector<type>>> name( \
h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))
#define vvvv(type, name, a, b, c, ...) \
vector<vector<vector<vector<type>>>> name( \
a, vector<vector<vector<type>>>( \
b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))
// https://trap.jp/post/1224/
#define FOR1(a) for (ll _ = 0; _ < ll(a); ++_)
#define FOR2(i, a) for (ll i = 0; i < ll(a); ++i)
#define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i)
#define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c))
#define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i)
#define overload4(a, b, c, d, e, ...) e
#define overload3(a, b, c, d, ...) d
#define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__)
#define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__)
#define FOR_subset(t, s) \
for (ll t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s)))
#define all(x) x.begin(), x.end()
#define len(x) ll(x.size())
#define elif else if
#define eb emplace_back
#define mp make_pair
#define mt make_tuple
#define fi first
#define se second
#define stoi stoll
int popcnt(int x) { return __builtin_popcount(x); }
int popcnt(u32 x) { return __builtin_popcount(x); }
int popcnt(ll x) { return __builtin_popcountll(x); }
int popcnt(u64 x) { return __builtin_popcountll(x); }
int popcnt_mod_2(int x) { return __builtin_parity(x); }
int popcnt_mod_2(u32 x) { return __builtin_parity(x); }
int popcnt_mod_2(ll x) { return __builtin_parityll(x); }
int popcnt_mod_2(u64 x) { return __builtin_parityll(x); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2)
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2)
int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
template <typename T>
T floor(T a, T b) {
return a / b - (a % b && (a ^ b) < 0);
}
template <typename T>
T ceil(T x, T y) {
return floor(x + y - 1, y);
}
template <typename T>
T bmod(T x, T y) {
return x - y * floor(x, y);
}
template <typename T>
pair<T, T> divmod(T x, T y) {
T q = floor(x, y);
return {q, x - q * y};
}
template <typename T, typename U>
T SUM(const vector<U> &A) {
T sm = 0;
for (auto &&a: A) sm += a;
return sm;
}
#define MIN(v) *min_element(all(v))
#define MAX(v) *max_element(all(v))
#define LB(c, x) distance((c).begin(), lower_bound(all(c), (x)))
#define UB(c, x) distance((c).begin(), upper_bound(all(c), (x)))
#define UNIQUE(x) \
sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit()
template <typename T>
T POP(deque<T> &que) {
T a = que.front();
que.pop_front();
return a;
}
template <typename T>
T POP(pq<T> &que) {
T a = que.top();
que.pop();
return a;
}
template <typename T>
T POP(pqg<T> &que) {
T a = que.top();
que.pop();
return a;
}
template <typename T>
T POP(vc<T> &que) {
T a = que.back();
que.pop_back();
return a;
}
template <typename F>
ll binary_search(F check, ll ok, ll ng, bool check_ok = true) {
if (check_ok) assert(check(ok));
while (abs(ok - ng) > 1) {
auto x = (ng + ok) / 2;
(check(x) ? ok : ng) = x;
}
return ok;
}
template <typename F>
double binary_search_real(F check, double ok, double ng, int iter = 100) {
FOR(iter) {
double x = (ok + ng) / 2;
(check(x) ? ok : ng) = x;
}
return (ok + ng) / 2;
}
template <class T, class S>
inline bool chmax(T &a, const S &b) {
return (a < b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chmin(T &a, const S &b) {
return (a > b ? a = b, 1 : 0);
}
// ? は -1
vc<int> s_to_vi(const string &S, char first_char) {
vc<int> A(S.size());
FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); }
return A;
}
template <typename T, typename U>
vector<T> cumsum(vector<U> &A, int off = 1) {
int N = A.size();
vector<T> B(N + 1);
FOR(i, N) { B[i + 1] = B[i] + A[i]; }
if (off == 0) B.erase(B.begin());
return B;
}
// stable sort
template <typename T>
vector<int> argsort(const vector<T> &A) {
vector<int> ids(len(A));
iota(all(ids), 0);
sort(all(ids),
[&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); });
return ids;
}
// A[I[0]], A[I[1]], ...
template <typename T>
vc<T> rearrange(const vc<T> &A, const vc<int> &I) {
vc<T> B(len(I));
FOR(i, len(I)) B[i] = A[I[i]];
return B;
}
#endif
#line 1 "other/io.hpp"
#define FASTIO
#include <unistd.h>
// https://judge.yosupo.jp/submission/21623
namespace fastio {
static constexpr uint32_t SZ = 1 << 17;
char ibuf[SZ];
char obuf[SZ];
char out[100];
// pointer of ibuf, obuf
uint32_t pil = 0, pir = 0, por = 0;
struct Pre {
char num[10000][4];
constexpr Pre() : num() {
for (int i = 0; i < 10000; i++) {
int n = i;
for (int j = 3; j >= 0; j--) {
num[i][j] = n % 10 | '0';
n /= 10;
}
}
}
} constexpr pre;
inline void load() {
memcpy(ibuf, ibuf + pil, pir - pil);
pir = pir - pil + fread(ibuf + pir - pil, 1, SZ - pir + pil, stdin);
pil = 0;
if (pir < SZ) ibuf[pir++] = '\n';
}
inline void flush() {
fwrite(obuf, 1, por, stdout);
por = 0;
}
void rd(char &c) {
do {
if (pil + 1 > pir) load();
c = ibuf[pil++];
} while (isspace(c));
}
void rd(string &x) {
x.clear();
char c;
do {
if (pil + 1 > pir) load();
c = ibuf[pil++];
} while (isspace(c));
do {
x += c;
if (pil == pir) load();
c = ibuf[pil++];
} while (!isspace(c));
}
template <typename T>
void rd_real(T &x) {
string s;
rd(s);
x = stod(s);
}
template <typename T>
void rd_integer(T &x) {
if (pil + 100 > pir) load();
char c;
do
c = ibuf[pil++];
while (c < '-');
bool minus = 0;
if constexpr (is_signed<T>::value || is_same_v<T, i128>) {
if (c == '-') { minus = 1, c = ibuf[pil++]; }
}
x = 0;
while ('0' <= c) { x = x * 10 + (c & 15), c = ibuf[pil++]; }
if constexpr (is_signed<T>::value || is_same_v<T, i128>) {
if (minus) x = -x;
}
}
void rd(int &x) { rd_integer(x); }
void rd(ll &x) { rd_integer(x); }
void rd(i128 &x) { rd_integer(x); }
void rd(u32 &x) { rd_integer(x); }
void rd(u64 &x) { rd_integer(x); }
void rd(u128 &x) { rd_integer(x); }
void rd(double &x) { rd_real(x); }
void rd(long double &x) { rd_real(x); }
void rd(f128 &x) { rd_real(x); }
template <class T, class U>
void rd(pair<T, U> &p) {
return rd(p.first), rd(p.second);
}
template <size_t N = 0, typename T>
void rd_tuple(T &t) {
if constexpr (N < std::tuple_size<T>::value) {
auto &x = std::get<N>(t);
rd(x);
rd_tuple<N + 1>(t);
}
}
template <class... T>
void rd(tuple<T...> &tpl) {
rd_tuple(tpl);
}
template <size_t N = 0, typename T>
void rd(array<T, N> &x) {
for (auto &d: x) rd(d);
}
template <class T>
void rd(vc<T> &x) {
for (auto &d: x) rd(d);
}
void read() {}
template <class H, class... T>
void read(H &h, T &... t) {
rd(h), read(t...);
}
void wt(const char c) {
if (por == SZ) flush();
obuf[por++] = c;
}
void wt(const string s) {
for (char c: s) wt(c);
}
void wt(const char *s) {
size_t len = strlen(s);
for (size_t i = 0; i < len; i++) wt(s[i]);
}
template <typename T>
void wt_integer(T x) {
if (por > SZ - 100) flush();
if (x < 0) { obuf[por++] = '-', x = -x; }
int outi;
for (outi = 96; x >= 10000; outi -= 4) {
memcpy(out + outi, pre.num[x % 10000], 4);
x /= 10000;
}
if (x >= 1000) {
memcpy(obuf + por, pre.num[x], 4);
por += 4;
} else if (x >= 100) {
memcpy(obuf + por, pre.num[x] + 1, 3);
por += 3;
} else if (x >= 10) {
int q = (x * 103) >> 10;
obuf[por] = q | '0';
obuf[por + 1] = (x - q * 10) | '0';
por += 2;
} else
obuf[por++] = x | '0';
memcpy(obuf + por, out + outi + 4, 96 - outi);
por += 96 - outi;
}
template <typename T>
void wt_real(T x) {
ostringstream oss;
oss << fixed << setprecision(15) << double(x);
string s = oss.str();
wt(s);
}
void wt(int x) { wt_integer(x); }
void wt(ll x) { wt_integer(x); }
void wt(i128 x) { wt_integer(x); }
void wt(u32 x) { wt_integer(x); }
void wt(u64 x) { wt_integer(x); }
void wt(u128 x) { wt_integer(x); }
void wt(double x) { wt_real(x); }
void wt(long double x) { wt_real(x); }
void wt(f128 x) { wt_real(x); }
template <class T, class U>
void wt(const pair<T, U> val) {
wt(val.first);
wt(' ');
wt(val.second);
}
template <size_t N = 0, typename T>
void wt_tuple(const T t) {
if constexpr (N < std::tuple_size<T>::value) {
if constexpr (N > 0) { wt(' '); }
const auto x = std::get<N>(t);
wt(x);
wt_tuple<N + 1>(t);
}
}
template <class... T>
void wt(tuple<T...> tpl) {
wt_tuple(tpl);
}
template <class T, size_t S>
void wt(const array<T, S> val) {
auto n = val.size();
for (size_t i = 0; i < n; i++) {
if (i) wt(' ');
wt(val[i]);
}
}
template <class T>
void wt(const vector<T> val) {
auto n = val.size();
for (size_t i = 0; i < n; i++) {
if (i) wt(' ');
wt(val[i]);
}
}
void print() { wt('\n'); }
template <class Head, class... Tail>
void print(Head &&head, Tail &&... tail) {
wt(head);
if (sizeof...(Tail)) wt(' ');
print(forward<Tail>(tail)...);
}
// gcc expansion. called automaticall after main.
void __attribute__((destructor)) _d() { flush(); }
} // namespace fastio
using fastio::read;
using fastio::print;
using fastio::flush;
#define INT(...) \
int __VA_ARGS__; \
read(__VA_ARGS__)
#define LL(...) \
ll __VA_ARGS__; \
read(__VA_ARGS__)
#define U32(...) \
u32 __VA_ARGS__; \
read(__VA_ARGS__)
#define U64(...) \
u64 __VA_ARGS__; \
read(__VA_ARGS__)
#define STR(...) \
string __VA_ARGS__; \
read(__VA_ARGS__)
#define CHAR(...) \
char __VA_ARGS__; \
read(__VA_ARGS__)
#define DBL(...) \
double __VA_ARGS__; \
read(__VA_ARGS__)
#define VEC(type, name, size) \
vector<type> name(size); \
read(name)
#define VV(type, name, h, w) \
vector<vector<type>> name(h, vector<type>(w)); \
read(name)
void YES(bool t = 1) { print(t ? "YES" : "NO"); }
void NO(bool t = 1) { YES(!t); }
void Yes(bool t = 1) { print(t ? "Yes" : "No"); }
void No(bool t = 1) { Yes(!t); }
void yes(bool t = 1) { print(t ? "yes" : "no"); }
void no(bool t = 1) { yes(!t); }
#line 2 "random/base.hpp"
u64 RNG_64() {
static uint64_t x_
= uint64_t(chrono::duration_cast<chrono::nanoseconds>(
chrono::high_resolution_clock::now().time_since_epoch())
.count())
* 10150724397891781847ULL;
x_ ^= x_ << 7;
return x_ ^= x_ >> 9;
}
u64 RNG(u64 lim) { return RNG_64() % lim; }
ll RNG(ll l, ll r) { return l + RNG_64() % (r - l); }
#line 2 "mod/modint61.hpp"
struct modint61 {
static constexpr u64 mod = (1ULL << 61) - 1;
u64 val;
constexpr modint61() : val(0ULL) {}
constexpr modint61(u32 x) : val(x) {}
constexpr modint61(u64 x) : val(x % mod) {}
constexpr modint61(int x) : val((x < 0) ? (x + static_cast<ll>(mod)) : x) {}
constexpr modint61(ll x)
: val(((x %= static_cast<ll>(mod)) < 0) ? (x + static_cast<ll>(mod))
: x) {}
static constexpr u64 get_mod() { return mod; }
modint61 &operator+=(const modint61 &a) {
val = ((val += a.val) >= mod) ? (val - mod) : val;
return *this;
}
modint61 &operator-=(const modint61 &a) {
val = ((val -= a.val) >= mod) ? (val + mod) : val;
return *this;
}
modint61 &operator*=(const modint61 &a) {
const unsigned __int128 y = static_cast<unsigned __int128>(val) * a.val;
val = (y >> 61) + (y & mod);
val = (val >= mod) ? (val - mod) : val;
return *this;
}
modint61 &operator/=(const modint61 &a) { return (*this *= a.inverse()); }
modint61 operator+(const modint61 &p) const { return modint61(*this) += p; }
modint61 operator-(const modint61 &p) const { return modint61(*this) -= p; }
modint61 operator*(const modint61 &p) const { return modint61(*this) *= p; }
modint61 operator/(const modint61 &p) const { return modint61(*this) /= p; }
bool operator==(const modint61 &p) const { return val == p.val; }
bool operator!=(const modint61 &p) const { return val != p.val; }
modint61 inverse() const {
ll a = val, b = mod, u = 1, v = 0, t;
while (b > 0) {
t = a / b;
swap(a -= t * b, b), swap(u -= t * v, v);
}
return modint61(u);
}
modint61 pow(ll n) const {
assert(n >= 0);
modint61 ret(1), mul(val);
while (n > 0) {
if (n & 1) ret *= mul;
mul *= mul, n >>= 1;
}
return ret;
}
};
#ifdef FASTIO
void rd(modint61 &x) {
fastio::rd(x.val);
assert(0 <= x.val && x.val < modint61::mod);
}
void wt(modint61 x) { fastio::wt(x.val); }
#endif
#line 3 "mod/modular_subset_sum.hpp"
// Faster Deterministic Modular Subset Sum. arXiv preprint arXiv:2012.06062.
// modular subset sum のための、シフト付きセグ木
// shift には 2^(N-k) 時間かかる
struct ShiftTree {
using M61 = modint61;
int delta;
int N, n;
M61 base;
vc<M61> dat;
vc<M61> base_pow;
ShiftTree(int N, ll base) : delta(0), N(N), n(topbit(N)), base(base) {
assert(N == (1 << n));
dat.assign(2 * N, 0);
base_pow.assign(n, 1);
base_pow[n - 1] = base;
FOR_R(i, n - 1) base_pow[i] = base_pow[i + 1] * base_pow[i + 1];
}
inline int skew(int k) { return (delta >> (n - k)) & 1; }
inline int left(int k, int i) {
int mask = (1 << (k + 1)) - 1;
return ((2 * i + 0 - skew(k + 1)) & mask) + (1 << (k + 1));
}
inline int right(int k, int i) {
int mask = (1 << (k + 1)) - 1;
return ((2 * i + 1 - skew(k + 1)) & mask) + (1 << (k + 1));
}
inline int parent(int k, int i) {
int mask = (1 << k) - 1;
return (((i + skew(k)) & mask) + (1 << k)) / 2;
}
inline void update(int k, int i) {
M61 b = base_pow[k];
dat[i] = b * dat[left(k, i)] + dat[right(k, i)];
}
inline void set(int i, ll x) {
i = (i + N - delta) % N + N;
dat[i] = x;
int k = n;
while (i != 1) {
i = parent(k, i);
--k;
update(k, i);
}
}
void shift(int k) {
k %= N;
if (k < 0) k += N;
if (k == 0) return;
int j = lowbit(k);
delta = (delta + k) % N;
FOR_R(k, n - j) { FOR3(i, 1 << k, 2 << k) update(k, i); }
}
// [a,b) における difference の列挙。output sensitive。
// T のノード i、Q のノード j が (x,y) を指すとする。
static void find_differences(vc<int>& res, ShiftTree& T, ShiftTree& Q, int a,
int b, int k, int i, int j, int x, int y) {
if (T.dat[i] == Q.dat[j]) return;
if (max(a, x) >= min(b, y)) return;
if (y == x + 1) {
res.eb(x);
return;
}
int z = (x + y) / 2;
find_differences(res, T, Q, a, b, k + 1, T.left(k, i), Q.left(k, j), x, z);
find_differences(res, T, Q, a, b, k + 1, T.right(k, i), Q.right(k, j), z,
y);
}
static vc<int> diff(ShiftTree& T, ShiftTree& Q, int a, int b) {
assert(T.N == Q.N);
vc<int> res;
find_differences(res, T, Q, a, b, 0, 1, 1, 0, T.N);
return res;
}
};
/*
計算量:(|vals| + mod) * log(mod)
・can(x) または [x] で bool を返す。
・restore(x) で復元。
コンストラクタには、(mod, vals) をわたす
*/
template <typename INT>
struct Modular_Subset_Sum {
int mod;
vc<INT>& vals;
vc<int> par;
Modular_Subset_Sum(int mod, vc<INT>& vals) : mod(mod), vals(vals) {
for (auto&& x: vals) assert(0 <= x && x < mod);
par.assign(mod, -1);
const ll base = RNG(0, (1LL << 61) - 1);
int k = 1;
while ((1 << k) < 2 * mod) ++k;
int L = 1 << k;
assert(L >= 2 * mod);
ShiftTree T1(L, base);
ShiftTree T2(L, base);
T1.set(0, 1);
T2.set(0, 1);
T2.set(L - mod, 1);
auto bit_rev = [&](int i) -> int {
int x = 0;
FOR(k) {
x = 2 * x + (i & 1);
i >>= 1;
}
return x;
};
vc<vi> IDS(L);
FOR(i, len(vals)) { IDS[vals[i]].eb(i); }
FOR(i, 1, L) {
int x = bit_rev(i);
if (len(IDS[x]) == 0) continue;
T2.shift(x - T2.delta);
for (auto&& idx: IDS[x]) {
auto diff = ShiftTree::diff(T1, T2, 0, mod);
for (auto&& d: diff) {
if (can(d)) continue;
par[d] = idx;
T1.set(d, 1);
T2.set((d + x) % L, 1);
T2.set((L + d + x - mod) % L, 1);
}
}
}
}
bool can(int x) {
if (x >= mod) return false;
return (x == 0 || par[x] != -1);
}
bool operator[](int x) { return can(x); }
vc<int> restore(int x) {
assert(can(x));
vc<int> res;
while (x) {
int i = par[x];
res.eb(i);
x -= vals[i];
if (x < 0) x += mod;
}
reverse(all(res));
return res;
}
};
#line 5 "test/yukicoder/4_1.test.cpp"
void solve() {
LL(N);
VEC(int, A, N);
ll S = SUM<ll>(A);
Modular_Subset_Sum MSS(S + 1, A);
if (MSS[S / 2] && S % 2 == 0) {
print("possible");
} else {
print("impossible");
}
}
signed main() {
cin.tie(nullptr);
ios::sync_with_stdio(false);
cout << setprecision(15);
ll T = 1;
// LL(T);
FOR(_, T) solve();
return 0;
}